These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38473685)

  • 1. Synergistic Effect of Carbon Micro/Nano-Fillers and Surface Patterning on the Superlubric Performance of 3D-Printed Structures.
    Gkougkousi K; Karantzalis AE; Nikolakopoulos PG; Dassios KG
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused Filament Fabricated Poly(lactic acid) Parts Reinforced with Short Carbon Fiber and Graphene Nanoparticles with Improved Tribological Properties.
    Al Abir A; Chakrabarti D; Trindade B
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Reinforcement with Short Carbon Fibers on the Friction and Wear Resistance of Additively Manufactured PA12.
    Gadelmoula A; Aldahash SA
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture.
    Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying.
    Ralls AM; Monette Z; Kasar AK; Menezes PL
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic transfer and measurement system for structural superlubric materials.
    Chen L; Lin C; Shi D; Huang X; Zheng Q; Nie J; Ma M
    Nat Commun; 2023 Oct; 14(1):6323. PubMed ID: 37816725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding wear and friction characteristics of polymer nanocomposite PAEK-PDMS with nano-hydroxyapatite and nano-carbon fibres as fillers.
    Iyer SB; Dube A; Dube NM; Roy P; Sailaja RRN
    J Mech Behav Biomed Mater; 2018 Oct; 86():23-32. PubMed ID: 29929083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological Behavior of Carbon-Based Nanomaterial-Reinforced Nickel Metal Matrix Composites.
    Patil A; Walunj G; Ozdemir F; Gupta RK; Borkar T
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions.
    Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q
    Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Synergistic Effect of WS
    Lu G; Shuai C; Liu Y; Yang X; Hu X
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Analysis of the Influence of Mineral Engine Oil on the Mechanical Parameters of FDM 3D-Printed PLA, PLA+CF, PETG, and PETG+CF Materials.
    Hozdić E; Hozdić E
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing Wear Resistance of UHMWPE by Loading Enforcing Carbon Fibers: Effect of Irreversible and Elastic Deformation, Friction Heating, and Filler Size.
    Panin SV; Kornienko LA; Alexenko VO; Buslovich DG; Bochkareva SA; Lyukshin BA
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mechanical Properties of 3D-Printed Polylactic Acid/Polyethylene Terephthalate Glycol Multi-Material Structures Manufactured by Material Extrusion.
    Demir E; Duygun İK; Bedeloğlu A
    3D Print Addit Manuf; 2024 Feb; 11(1):197-206. PubMed ID: 38389667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Superlubric Interface across Nano- and Micro-Scales Enabled by Fluoroalkylsilane Self-Assembled Monolayers and Atomically Thin Graphene.
    Zhao X; Peng Y; Cao X; Yu K; Lang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56704-56717. PubMed ID: 34792342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance.
    Portoacă AI; Ripeanu RG; Diniță A; Tănase M
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribological Performance of Additively Manufactured AISI H13 Steel in Different Surface Conditions.
    Guenther E; Kahlert M; Vollmer M; Niendorf T; Greiner C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribological Characterisation and Modelling for the Fused Deposition Modelling of Polymeric Structures under Lubrication Conditions.
    He F; Xu C; Khan M
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.