These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38473786)
61. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Bhardwaj A; Singh H; Rajapakshe K; Tachibana K; Ganesan N; Pan Y; Gunaratne PH; Coarfa C; Bedrosian I Oncotarget; 2017 Mar; 8(12):19645-19660. PubMed ID: 28160548 [TBL] [Abstract][Full Text] [Related]
62. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. Quintero M; Adamoski D; Reis LMD; Ascenção CFR; Oliveira KRS; Gonçalves KA; Dias MM; Carazzolle MF; Dias SMG BMC Cancer; 2017 Nov; 17(1):727. PubMed ID: 29115931 [TBL] [Abstract][Full Text] [Related]
63. Frequent inactivation of MCC/CTNNBIP1 and overexpression of phospho-beta-catenin(Y654) are associated with breast carcinoma: Clinical and prognostic significance. Mukherjee N; Dasgupta H; Bhattacharya R; Pal D; Roy R; Islam S; Alam N; Biswas J; Roy A; Roychoudhury S; Panda CK Biochim Biophys Acta; 2016 Sep; 1862(9):1472-84. PubMed ID: 27208794 [TBL] [Abstract][Full Text] [Related]
64. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Guo GC; Wang JX; Han ML; Zhang LP; Li L Cell Oncol (Dordr); 2017 Apr; 40(2):157-166. PubMed ID: 28054302 [TBL] [Abstract][Full Text] [Related]
65. TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Zhang TM; Liao L; Yang SY; Huang MY; Zhang YL; Deng L; Hu SY; Yang F; Zhang FL; Shao ZM; Li DQ Autophagy; 2023 Mar; 19(3):805-821. PubMed ID: 35920704 [TBL] [Abstract][Full Text] [Related]
66. Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis. Dong P; Yu B; Pan L; Tian X; Liu F Biomed Res Int; 2018; 2018():2760918. PubMed ID: 30175120 [TBL] [Abstract][Full Text] [Related]
67. Landscape analysis of adjacent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer. Lee S; Hu Y; Loo SK; Tan Y; Bhargava R; Lewis MT; Wang XS Proc Natl Acad Sci U S A; 2020 May; 117(18):9912-9921. PubMed ID: 32321829 [TBL] [Abstract][Full Text] [Related]
68. Increased hypermethylation of glutathione S-transferase P1, DNA-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females. Hafez MM; Al-Shabanah OA; Al-Rejaie SS; Al-Harbi NO; Hassan ZK; Alsheikh A; Al Theyab AI; Aldelemy ML; Sayed-Ahmed MM Asian Pac J Cancer Prev; 2015; 16(2):541-9. PubMed ID: 25684485 [TBL] [Abstract][Full Text] [Related]
69. Expression of C-myc and β-catenin and their correlation in triple negative breast cancer. Wang J; Li M; Chen D; Nie J; Xi Y; Yang X; Chen Y; Yang Z Minerva Med; 2017 Dec; 108(6):513-517. PubMed ID: 28889723 [TBL] [Abstract][Full Text] [Related]
70. Selectively Targeting Breast Cancer Stem Cells by 8-Quinolinol and Niclosamide. Cámara-Sánchez P; Díaz-Riascos ZV; García-Aranda N; Gener P; Seras-Franzoso J; Giani-Alonso M; Royo M; Vázquez E; Schwartz S; Abasolo I Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233074 [TBL] [Abstract][Full Text] [Related]
71. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Andreasen S; Tan Q; Agander TK; Steiner P; Bjørndal K; Høgdall E; Larsen SR; Erentaite D; Olsen CH; Ulhøi BP; von Holstein SL; Wessel I; Heegaard S; Homøe P Mod Pathol; 2018 Aug; 31(8):1211-1225. PubMed ID: 29467480 [TBL] [Abstract][Full Text] [Related]
72. Investigation of molecular alterations of AKT-3 in triple-negative breast cancer. O'Hurley G; Daly E; O'Grady A; Cummins R; Quinn C; Flanagan L; Pierce A; Fan Y; Lynn MA; Rafferty M; Fitzgerald D; Pontén F; Duffy MJ; Jirström K; Kay EW; Gallagher WM Histopathology; 2014 Apr; 64(5):660-70. PubMed ID: 24138071 [TBL] [Abstract][Full Text] [Related]
73. Actin-like protein 6A/MYC/CDK2 axis confers high proliferative activity in triple-negative breast cancer. Jian Y; Huang X; Fang L; Wang M; Liu Q; Xu H; Kong L; Chen X; Ouyang Y; Wang X; Wei W; Song L J Exp Clin Cancer Res; 2021 Feb; 40(1):56. PubMed ID: 33541412 [TBL] [Abstract][Full Text] [Related]
74. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. Wu SY; Xiao Y; Wei JL; Xu XE; Jin X; Hu X; Li DQ; Jiang YZ; Shao ZM J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34321275 [TBL] [Abstract][Full Text] [Related]
75. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Vázquez R; Riveiro ME; Astorgues-Xerri L; Odore E; Rezai K; Erba E; Panini N; Rinaldi A; Kwee I; Beltrame L; Bekradda M; Cvitkovic E; Bertoni F; Frapolli R; D'Incalci M Oncotarget; 2017 Jan; 8(5):7598-7613. PubMed ID: 27935867 [TBL] [Abstract][Full Text] [Related]
76. Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers. Farrington CC; Yuan E; Mazhar S; Izadmehr S; Hurst L; Allen-Petersen BL; Janghorban M; Chung E; Wolczanski G; Galsky M; Sears R; Sangodkar J; Narla G J Biol Chem; 2020 Jan; 295(3):757-770. PubMed ID: 31822503 [TBL] [Abstract][Full Text] [Related]
77. USP22 Contributes to Chemoresistance, Stemness, and EMT Phenotype of Triple-Negative Breast Cancer Cells by egulating the Warburg Effect via c-Myc Deubiquitination. Li J; Gao R; Zhang J Clin Breast Cancer; 2023 Feb; 23(2):162-175. PubMed ID: 36528490 [TBL] [Abstract][Full Text] [Related]
78. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer. Zhao ZM; Yost SE; Hutchinson KE; Li SM; Yuan YC; Noorbakhsh J; Liu Z; Warden C; Johnson RM; Wu X; Chuang JH; Yuan Y BMC Cancer; 2019 Jan; 19(1):96. PubMed ID: 30665374 [TBL] [Abstract][Full Text] [Related]
79. Identification of a stemness-related gene panel associated with BET inhibition in triple negative breast cancer. Serrano-Oviedo L; Nuncia-Cantarero M; Morcillo-Garcia S; Nieto-Jimenez C; Burgos M; Corrales-Sanchez V; Perez-Peña J; Győrffy B; Ocaña A; Galán-Moya EM Cell Oncol (Dordr); 2020 Jun; 43(3):431-444. PubMed ID: 32166583 [TBL] [Abstract][Full Text] [Related]
80. Dual-target MDM2/MDMX inhibitor increases the sensitization of doxorubicin and inhibits migration and invasion abilities of triple-negative breast cancer cells through activation of TAB1/TAK1/p38 MAPK pathway. Fan Y; Li M; Ma K; Hu Y; Jing J; Shi Y; Li E; Dong D Cancer Biol Ther; 2019; 20(5):617-632. PubMed ID: 30462562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]