These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38473951)

  • 21. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications.
    Zhang H; Wang H; Zhu Q; Gao Y; Wang H; Zhao L; Wang Y; Xi F; Wang W; Yang Y; Lin C; Gu L
    BMC Plant Biol; 2018 Jun; 18(1):125. PubMed ID: 29925317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.
    Komatsu S; Takasaki H
    Amino Acids; 2009 Jul; 37(2):231-8. PubMed ID: 18597039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels.
    Fina J; Casadevall R; AbdElgawad H; Prinsen E; Markakis MN; Beemster GTS; Casati P
    Plant Physiol; 2017 Jun; 174(2):1110-1126. PubMed ID: 28400494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Over-expression of transcription factor ARK1 gene leads to down-regulation of lignin synthesis related genes in hybrid poplar '717'.
    Ye Q; Liu X; Bian W; Zhang Z; Zhang H
    Sci Rep; 2020 May; 10(1):8549. PubMed ID: 32444679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights into light spectral quality inhibits the plasticity elongation of maize mesocotyl and coleoptile during seed germination.
    Zhao X; Niu Y; Hossain Z; Zhao B; Bai X; Mao T
    Front Plant Sci; 2023; 14():1152399. PubMed ID: 37008499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maize transcriptomic repertoires respond to gibberellin stimulation.
    Wang Y; Wang X; Deng D; Wang Y
    Mol Biol Rep; 2019 Aug; 46(4):4409-4421. PubMed ID: 31144186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic Analysis of Leaf Sheath Maturation in Maize.
    Dong L; Qin L; Dai X; Ding Z; Bi R; Liu P; Chen Y; Brutnell TP; Wang X; Li P
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic and Metabolic Profiling Reveals a Lignin Metabolism Network Involved in Mesocotyl Elongation during Maize Seed Germination.
    Zhao X; Niu Y; Bai X; Mao T
    Plants (Basel); 2022 Apr; 11(8):. PubMed ID: 35448762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels.
    Yu T; Zhang J; Cao J; Cai Q; Li X; Sun Y; Li S; Li Y; Hu G; Cao S; Liu C; Wang G; Wang L; Duan Y
    Genomics; 2021 Mar; 113(2):782-794. PubMed ID: 33516847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves.
    Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordination of the maize transcriptome by a conserved circadian clock.
    Khan S; Rowe SC; Harmon FG
    BMC Plant Biol; 2010 Jun; 10():126. PubMed ID: 20576144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gibberellin-responsive genes: high level of transcript accumulation in leaf sheath meristematic tissue from Zea mays L.
    Ogawa M; Kusano T; Koizumi N; Katsumi M; Sano H
    Plant Mol Biol; 1999 Jul; 40(4):645-57. PubMed ID: 10480388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth.
    Liu WY; Lin HH; Yu CP; Chang CK; Chen HJ; Lin JJ; Lu MJ; Tu SL; Shiu SH; Wu SH; Ku MSB; Li WH
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21747-21756. PubMed ID: 32817425
    [No Abstract]   [Full Text] [Related]  

  • 34. Transcriptomic study of pedicels from GA
    Meneses M; García-Rojas M; Muñoz-Espinoza C; Carrasco-Valenzuela T; Defilippi B; González-Agüero M; Meneses C; Infante R; Hinrichsen P
    BMC Plant Biol; 2020 Feb; 20(1):66. PubMed ID: 32041534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis.
    Rogers LA; Dubos C; Cullis IF; Surman C; Poole M; Willment J; Mansfield SD; Campbell MM
    J Exp Bot; 2005 Jun; 56(416):1651-63. PubMed ID: 15878986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA
    Li B; Zhang P; Wang F; Li R; Liu J; Wang Q; Liu W; Wang B; Hu G
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920519
    [No Abstract]   [Full Text] [Related]  

  • 37. Integration of transcriptome and metabolome analyses reveals key lodging-resistance-related genes and metabolic pathways in maize.
    Liu L; Liu S; Lu H; Tian Z; Zhao H; Wei D; Wang S; Huang Z
    Front Genet; 2022; 13():1001195. PubMed ID: 36299597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment.
    Ren Z; Wang X; Tao Q; Guo Q; Zhou Y; Yi F; Huang G; Li Y; Zhang M; Li Z; Duan L
    BMC Plant Biol; 2021 Apr; 21(1):202. PubMed ID: 33906598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of the maize transcription factor ZmVQ52 accelerates leaf senescence in Arabidopsis.
    Yu T; Lu X; Bai Y; Mei X; Guo Z; Liu C; Cai Y
    PLoS One; 2019; 14(8):e0221949. PubMed ID: 31469881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves.
    Hu Y; Li WC; Xu YQ; Li GJ; Liao Y; Fu FL
    J Appl Genet; 2009; 50(3):213-23. PubMed ID: 19638676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.