BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38473953)

  • 41. Combination of inhibitors for two glycolytic enzymes portrays high synergistic efficacy against
    Khan SM; Bajwa MR; Lahar RY; Witola WH
    Antimicrob Agents Chemother; 2023 Oct; 67(10):e0056923. PubMed ID: 37655889
    [No Abstract]   [Full Text] [Related]  

  • 42. Proteolytic processing of the Cryptosporidium glycoprotein gp40/15 by human furin and by a parasite-derived furin-like protease activity.
    Wanyiri JW; O'Connor R; Allison G; Kim K; Kane A; Qiu J; Plaut AG; Ward HD
    Infect Immun; 2007 Jan; 75(1):184-92. PubMed ID: 17043102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryptosporidium parvum induces an endoplasmic stress response in the intestinal adenocarcinoma HCT-8 cell line.
    Morada M; Pendyala L; Wu G; Merali S; Yarlett N
    J Biol Chem; 2013 Oct; 288(42):30356-30364. PubMed ID: 23986438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target.
    Yang B; Yan Y; Wang D; Zhang Y; Yin J; Zhu G
    PLoS Negl Trop Dis; 2023 Mar; 17(3):e0011217. PubMed ID: 36972284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anti-protozoal activity of extracts from chicory (Cichorium intybus) against Cryptosporidium parvum in cell culture.
    Woolsey ID; Valente AH; Williams AR; Thamsborg SM; Simonsen HT; Enemark HL
    Sci Rep; 2019 Dec; 9(1):20414. PubMed ID: 31892721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A cysteine protease inhibitor rescues mice from a lethal Cryptosporidium parvum infection.
    Ndao M; Nath-Chowdhury M; Sajid M; Marcus V; Mashiyama ST; Sakanari J; Chow E; Mackey Z; Land KM; Jacobson MP; Kalyanaraman C; McKerrow JH; Arrowood MJ; Caffrey CR
    Antimicrob Agents Chemother; 2013 Dec; 57(12):6063-73. PubMed ID: 24060869
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Long Non-Coding RNA in
    Li Y; Baptista RP; Sateriale A; Striepen B; Kissinger JC
    Front Cell Infect Microbiol; 2020; 10():608298. PubMed ID: 33520737
    [No Abstract]   [Full Text] [Related]  

  • 49. Structural Analyses of a Dominant Cryptosporidium parvum Epitope Presented by H-2K
    Wang Y; Gao M; Li X; Zhu W; Zhao M; Li J; Liu X; Cao L; Li S; Zhang S; Zhang L; Fan S
    mBio; 2023 Feb; 14(1):e0266622. PubMed ID: 36602309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein Kinase C-α Is a Gatekeeper of
    McCowin S; Petri WA; Marie C
    Infect Immun; 2022 Mar; 90(3):e0067921. PubMed ID: 35099276
    [No Abstract]   [Full Text] [Related]  

  • 51. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum.
    Lai P; Yang X; Li YH; Yin YL; Yao Q; Huang S; Fan YY; Song JK; Zhao GH
    Parasitol Res; 2023 Apr; 122(4):989-996. PubMed ID: 36879147
    [TBL] [Abstract][Full Text] [Related]  

  • 52.
    Dhal AK; Pani A; Yun SI; Mahapatra RK
    J Biomol Struct Dyn; 2021 Sep; 39(15):5461-5470. PubMed ID: 32633680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circular RNA ciRS-7 affects the propagation of Cryptosporidium parvum in HCT-8 cells by sponging miR-1270 to activate the NF-κB signaling pathway.
    Yin YL; Liu TL; Yao Q; Wang YX; Wu XM; Wang XT; Yang X; Song JK; Zhao GH
    Parasit Vectors; 2021 May; 14(1):238. PubMed ID: 33957927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cryptosporidium parvum has an active hypusine biosynthesis pathway.
    Mittal N; Morada M; Tripathi P; Gowri VS; Mandal S; Quirch A; Park MH; Yarlett N; Madhubala R
    Mol Biochem Parasitol; 2014 Jun; 195(1):14-22. PubMed ID: 24893338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis.
    Love MS; Beasley FC; Jumani RS; Wright TM; Chatterjee AK; Huston CD; Schultz PG; McNamara CW
    PLoS Negl Trop Dis; 2017 Feb; 11(2):e0005373. PubMed ID: 28158186
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions between Cryptosporidium parvum and bovine corona virus during sequential and simultaneous infection of HCT-8 cells.
    Shakya R; Meléndez AJ; Robertson LJ; Myrmel M
    Microbes Infect; 2022; 24(3):104909. PubMed ID: 34813933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MiR-942-5p targeting the IFI27 gene regulates HCT-8 cell apoptosis via a TRAIL-dependent pathway during the early phase of Cryptosporidium parvum infection.
    Xie F; Zhang Y; Li J; Sun L; Zhang L; Qi M; Zhang S; Jian F; Li X; Li J; Ning C; Wang R
    Parasit Vectors; 2022 Aug; 15(1):291. PubMed ID: 35974384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MicroRNA expression profile of HCT-8 cells in the early phase of Cryptosporidium parvum infection.
    Wang C; Liu L; Zhu H; Zhang L; Wang R; Zhang Z; Huang J; Zhang S; Jian F; Ning C; Zhang L
    BMC Genomics; 2019 Jan; 20(1):37. PubMed ID: 30642246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src.
    Chen XM; Huang BQ; Splinter PL; Cao H; Zhu G; McNiven MA; LaRusso NF
    Gastroenterology; 2003 Jul; 125(1):216-28. PubMed ID: 12851885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Putative SET-domain methyltransferases in
    Sawant M; Benamrouz-Vanneste S; Meloni D; Gantois N; Even G; Guyot K; Creusy C; Duval E; Wintjens R; Weitzman JB; Chabe M; Viscogliosi E; Certad G
    Virulence; 2022 Dec; 13(1):1632-1650. PubMed ID: 36097362
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.