These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38473953)

  • 81. MiR-4521 affects the propagation of Cryptosporidium parvum in HCT-8 cells through targeting foxm1 by regulating cell apoptosis.
    Yao Q; Fan YY; Huang S; Hu GR; Song JK; Yang X; Zhao GH
    Acta Trop; 2024 Jan; 249():107057. PubMed ID: 37913972
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Elongation factor-1α is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum.
    Matsubayashi M; Teramoto-Kimata I; Uni S; Lillehoj HS; Matsuda H; Furuya M; Tani H; Sasai K
    J Biol Chem; 2013 Nov; 288(47):34111-34120. PubMed ID: 24085304
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase.
    Sharling L; Liu X; Gollapalli DR; Maurya SK; Hedstrom L; Striepen B
    PLoS Negl Trop Dis; 2010 Aug; 4(8):e794. PubMed ID: 20706578
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases.
    Guo F; Zhang H; Fritzler JM; Rider SD; Xiang L; McNair NN; Mead JR; Zhu G
    J Infect Dis; 2014 Apr; 209(8):1279-87. PubMed ID: 24273180
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques.
    Chen L; Hu S; Jiang W; Zhao J; Li N; Guo Y; Liao C; Han Q; Feng Y; Xiao L
    Parasit Vectors; 2019 Jul; 12(1):350. PubMed ID: 31307508
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Nuclear delivery of parasite Cdg2_FLc_0220 RNA transcript to epithelial cells during Cryptosporidium parvum infection modulates host gene transcription.
    Zhao GH; Gong AY; Wang Y; Zhang XT; Li M; Mathy NW; Chen XM
    Vet Parasitol; 2018 Feb; 251():27-33. PubMed ID: 29426472
    [TBL] [Abstract][Full Text] [Related]  

  • 87. miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection.
    Zhou R; Gong AY; Eischeid AN; Chen XM
    PLoS Pathog; 2012; 8(5):e1002702. PubMed ID: 22615562
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The suppressive effect of Mekabu fucoidan on an attachment of Cryptosporidium parvum oocysts to the intestinal epithelial cells in neonatal mice.
    Maruyama H; Tanaka M; Hashimoto M; Inoue M; Sasahara T
    Life Sci; 2007 Jan; 80(8):775-81. PubMed ID: 17157323
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cryptosporidium parvum cyclic GMP-dependent protein kinase (PKG): An essential mediator of merozoite egress.
    Nava S; Sadiqova A; Castellanos-Gonzalez A; White AC
    Mol Biochem Parasitol; 2020 May; 237():111277. PubMed ID: 32348840
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The Cryptosporidium parvum gp60 glycoprotein expressed in the ciliate Tetrahymena thermophila is immunoreactive with sera of calves infected with Cryptosporidium oocysts.
    Elguero ME; Tomazic ML; Montes MG; Florin-Christensen M; Schnittger L; Nusblat AD
    Vet Parasitol; 2019 Jul; 271():45-50. PubMed ID: 31303202
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Induction of Inflammatory Responses in Splenocytes by Exosomes Released from Intestinal Epithelial Cells following
    Wang Y; Shen Y; Liu H; Yin J; Zhang XT; Gong AY; Chen X; Chen S; Mathy NW; Cao J; Chen XM
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30642905
    [No Abstract]   [Full Text] [Related]  

  • 92. Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization.
    O'Hara SP; Gajdos GB; Trussoni CE; Splinter PL; LaRusso NF
    Infect Immun; 2010 Jul; 78(7):2927-36. PubMed ID: 20457792
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Factors associated with shedding of Cryptosporidium parvum versus Cryptosporidium bovis among dairy cattle in New York State.
    Starkey SR; Zeigler PE; Wade SE; Schaaf SL; Mohammed HO
    J Am Vet Med Assoc; 2006 Nov; 229(10):1623-6. PubMed ID: 17107320
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Involvement of host cell integrin α2 in Cryptosporidium parvum infection.
    Zhang H; Guo F; Zhu G
    Infect Immun; 2012 May; 80(5):1753-8. PubMed ID: 22354032
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells.
    VanDussen KL; Funkhouser-Jones LJ; Akey ME; Schaefer DA; Ackman K; Riggs MW; Stappenbeck TS; Sibley LD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323514
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein.
    Bhalchandra S; Ludington J; Coppens I; Ward HD
    Infect Immun; 2013 Sep; 81(9):3356-65. PubMed ID: 23817613
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Use of Recombinant CP2 and CP23 Antigens of Cryptosporidium parvum for Serodiagnosis of Human Cryptosporidiosis.
    Barzegar G; Ahmadpour E; Shahriari B; Solgi R; Motazedian MH
    Iran Biomed J; 2022 Nov; 26(5):374-9. PubMed ID: 36369769
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bumped kinase inhibitor prohibits egression in Babesia bovis.
    Pedroni MJ; Vidadala RS; Choi R; Keyloun KR; Reid MC; Murphy RC; Barrett LK; Van Voorhis WC; Maly DJ; Ojo KK; Lau AO
    Vet Parasitol; 2016 Jan; 215():22-8. PubMed ID: 26790733
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Therapeutic Potency of Ginger, Garlic, and Pomegranate Extracts Against Cryptosporidium parvum-Mediated Gastro-Splenic Damage in Mice.
    El-Shewehy DMM; Elshopakey GE; Ismail A; Hassan SS; Ramez AM
    Acta Parasitol; 2023 Mar; 68(1):32-41. PubMed ID: 36348178
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The Cryptosporidium parvum C-Type Lectin CpClec Mediates Infection of Intestinal Epithelial Cells via Interactions with Sulfated Proteoglycans.
    Ludington JG; Ward HD
    Infect Immun; 2016 May; 84(5):1593-1602. PubMed ID: 26975991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.