BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 38474093)

  • 41. [Bone and calcium metabolism associated with malignancy. The interaction of bone pain and cancer progression.].
    Okui T
    Clin Calcium; 2018; 28(11):1473-1478. PubMed ID: 30374003
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CD8
    Monteiro AC; Bonomo A
    Bone; 2021 Sep; 150():116014. PubMed ID: 34022456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer.
    Fradet A; Sorel H; Depalle B; Serre CM; Farlay D; Turtoi A; Bellahcene A; Follet H; Castronovo V; Clézardin P; Bonnelye E
    PLoS One; 2013; 8(9):e75092. PubMed ID: 24069383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches.
    Yang H; Yu Z; Ji S; Huo Q; Yan J; Gao Y; Niu Y; Xu M; Liu Y
    J Control Release; 2022 Jan; 341():443-456. PubMed ID: 34748870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.
    Mohamedali KA; Li ZG; Starbuck MW; Wan X; Yang J; Kim S; Zhang W; Rosenblum MG; Navone NM
    Clin Cancer Res; 2011 Apr; 17(8):2328-38. PubMed ID: 21343372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts.
    David M; Wannecq E; Descotes F; Jansen S; Deux B; Ribeiro J; Serre CM; Grès S; Bendriss-Vermare N; Bollen M; Saez S; Aoki J; Saulnier-Blache JS; Clézardin P; Peyruchaud O
    PLoS One; 2010 Mar; 5(3):e9741. PubMed ID: 20305819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone: A Fertile Soil for Cancer Metastasis.
    Coughlin TR; Romero-Moreno R; Mason DE; Nystrom L; Boerckel JD; Niebur G; Littlepage LE
    Curr Drug Targets; 2017; 18(11):1281-1295. PubMed ID: 28025941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dynamic microenvironment associated with metastatic bone disease: Current concepts.
    Bhale R; Ghosh P; Theriault R; Thorpe S; Loots G; Randall RL
    J Surg Oncol; 2023 Sep; 128(3):468-477. PubMed ID: 37226887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Bone Microenvironment: a Fertile Soil for Tumor Growth.
    Buenrostro D; Mulcrone PL; Owens P; Sterling JA
    Curr Osteoporos Rep; 2016 Aug; 14(4):151-8. PubMed ID: 27255469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Therapeutic targets for bone metastases in breast cancer.
    Clézardin P
    Breast Cancer Res; 2011 Apr; 13(2):207. PubMed ID: 21586099
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment.
    Arnold RS; Fedewa SA; Goodman M; Osunkoya AO; Kissick HT; Morrissey C; True LD; Petros JA
    Bone; 2015 Sep; 78():81-6. PubMed ID: 25952970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tumor-stromal interactions in bone metastasis.
    Nannuru KC; Singh RK
    Curr Osteoporos Rep; 2010 Jun; 8(2):105-13. PubMed ID: 20425618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pathogenesis of osteoblastic bone metastases from prostate cancer.
    Ibrahim T; Flamini E; Mercatali L; Sacanna E; Serra P; Amadori D
    Cancer; 2010 Mar; 116(6):1406-18. PubMed ID: 20108337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stromal-Derived Extracellular Vesicles Suppress Proliferation of Bone Metastatic Cancer Cells Mediated by ERK2.
    Shupp AB; Neupane M; Agostini LC; Ning G; Brody JR; Bussard KM
    Mol Cancer Res; 2021 Oct; 19(10):1763-1777. PubMed ID: 34021072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into immuno-oncology drug development landscape with focus on bone metastasis.
    Kähkönen TE; Halleen JM; MacRitchie G; Andersson RM; Bernoulli J
    Front Immunol; 2023; 14():1121878. PubMed ID: 37475868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibiting Osteolytic Breast Cancer Bone Metastasis by Bone-Targeted Nanoagent via Remodeling the Bone Tumor Microenvironment Combined with NIR-II Photothermal Therapy.
    Zeng Y; Pan Z; Yuan J; Song Y; Feng Z; Chen Z; Ye Z; Li Y; Bao Y; Ran Z; Li X; Ye H; Zhang K; Liu X; He Y
    Small; 2023 Sep; 19(38):e2301003. PubMed ID: 37211708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer.
    Patil KC; Soekmadji C
    Subcell Biochem; 2021; 97():297-361. PubMed ID: 33779922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hypoxic Microenvironment and Metastatic Bone Disease.
    Hiraga T
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30423905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HIF targets in bone remodeling and metastatic disease.
    Johnson RW; Schipani E; Giaccia AJ
    Pharmacol Ther; 2015 Jun; 150():169-77. PubMed ID: 25681658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel approaches to target the microenvironment of bone metastasis.
    Hofbauer LC; Bozec A; Rauner M; Jakob F; Perner S; Pantel K
    Nat Rev Clin Oncol; 2021 Aug; 18(8):488-505. PubMed ID: 33875860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.