These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38474194)

  • 1. Viral Immunogenicity Prediction by Machine Learning Methods.
    Doneva N; Dimitrov I
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Bacterial Immunogenicity by Machine Learning Methods.
    Dimitrov I; Doytchinova I
    Methods Mol Biol; 2023; 2673():289-303. PubMed ID: 37258922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial Immunogenicity Prediction by Machine Learning Methods.
    Dimitrov I; Zaharieva N; Doytchinova I
    Vaccines (Basel); 2020 Nov; 8(4):. PubMed ID: 33265930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines.
    Doytchinova IA; Flower DR
    BMC Bioinformatics; 2007 Jan; 8():4. PubMed ID: 17207271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection.
    Rodríguez M; Alesanco Á; Mehavilla L; García J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens.
    Nosrati M; Mohabatkar H; Behbahani M
    Int Immunopharmacol; 2020 Jan; 78():106020. PubMed ID: 31776090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VaxiJen Dataset of Bacterial Immunogens: An Update.
    Zaharieva N; Dimitrov I; Flower DR; Doytchinova I
    Curr Comput Aided Drug Des; 2019; 15(5):398-400. PubMed ID: 30887928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set?
    Su M; Feng G; Liu Z; Li Y; Wang R
    J Chem Inf Model; 2020 Mar; 60(3):1122-1136. PubMed ID: 32085675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions.
    Jaiswal V; Chanumolu SK; Gupta A; Chauhan RS; Rout C
    BMC Bioinformatics; 2013 Jul; 14():211. PubMed ID: 23815072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fangorn Forest (F2): a machine learning approach to classify genes and genera in the family Geminiviridae.
    Silva JCF; Carvalho TFM; Fontes EPB; Cerqueira FR
    BMC Bioinformatics; 2017 Sep; 18(1):431. PubMed ID: 28964254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers.
    Hassan CAU; Iqbal J; Irfan R; Hussain S; Algarni AD; Bukhari SSH; Alturki N; Ullah SS
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional Neural Network Model Based on 2D Fingerprint for Bioactivity Prediction.
    Hentabli H; Bengherbia B; Saeed F; Salim N; Nafea I; Toubal A; Nasser M
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Machine Learning Algorithms and Feature Sets for Automatic Vocal Emotion Recognition in Speech.
    Doğdu C; Kessler T; Schneider D; Shadaydeh M; Schweinberger SR
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database.
    Hao N; Sun P; Zhao W; Li X
    Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity.
    Balraadjsing S; Peijnenburg WJGM; Vijver MG
    Chemosphere; 2022 Nov; 307(Pt 2):135930. PubMed ID: 35961453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.