BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38474338)

  • 21. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.
    Maurus K; Hufnagel A; Geiger F; Graf S; Berking C; Heinemann A; Paschen A; Kneitz S; Stigloher C; Geissinger E; Otto C; Bosserhoff A; Schartl M; Meierjohann S
    Oncogene; 2017 Sep; 36(36):5110-5121. PubMed ID: 28481878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nevi, other than dysplastic and Spitz nevi.
    Cochran AJ; Bailly C; Paul E; Dolbeau D
    Semin Diagn Pathol; 1993 Feb; 10(1):3-17. PubMed ID: 8506415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protooncogene MYC drives human melanocyte melanogenesis and senescence.
    San Juan L; Cagigal ML; Fernandez-Flores A; Mayorga M; Gandarillas A
    Cancer Gene Ther; 2022 Aug; 29(8-9):1160-1167. PubMed ID: 35022520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melanoma Developing from an Intradermal Nevus: Report on Two Patients.
    Ledić Drvar D; Radoš J; Manola I; Mataić A; Dotlić S; Krušlin B
    Acta Dermatovenerol Croat; 2023 Aug; 31(1):40-42. PubMed ID: 37843090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melanoma Risk and Melanocyte Biology.
    Bertrand JU; Steingrimsson E; Jouenne F; Bressac-de Paillerets B; Larue L
    Acta Derm Venereol; 2020 Jun; 100(11):adv00139. PubMed ID: 32346747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The epidermal melanin unit in the pathophysiology of malignant melanoma.
    Jimbow K; Salopek TG; Dixon WT; Searles GE; Yamada K
    Am J Dermatopathol; 1991 Apr; 13(2):179-88. PubMed ID: 2029092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KUVA (khellin plus ultraviolet A) stimulates proliferation and melanogenesis in normal human melanocytes and melanoma cells in vitro.
    Carlie G; Ntusi NB; Hulley PA; Kidson SH
    Br J Dermatol; 2003 Oct; 149(4):707-17. PubMed ID: 14616361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The Importance of MITF Signaling Pathway in the Regulation of Proliferation and Invasiveness of Malignant Melanoma].
    Urban P; Rabajdová M; Veliká B; Špaková I; Bolerázska B; Mareková M
    Klin Onkol; 2016; 29(5):347-350. PubMed ID: 27739313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells.
    Katkat E; Demirci Y; Heger G; Karagulle D; Papatheodorou I; Brazma A; Ozhan G
    Front Cell Dev Biol; 2023; 11():1297910. PubMed ID: 38020918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis.
    de Souza CF; Xander P; Monteiro AC; Silva AG; da Silva DC; Mai S; Bernardo V; Lopes JD; Jasiulionis MG
    PLoS One; 2012; 7(9):e44800. PubMed ID: 22984562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells.
    Ancans J; Tobin DJ; Hoogduijn MJ; Smit NP; Wakamatsu K; Thody AJ
    Exp Cell Res; 2001 Aug; 268(1):26-35. PubMed ID: 11461115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of microtubule-associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma.
    Fang D; Hallman J; Sangha N; Kute TE; Hammarback JA; White WL; Setaluri V
    Am J Pathol; 2001 Jun; 158(6):2107-15. PubMed ID: 11395388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epidermal melanocytes adjacent to melanoma and the field change effect.
    Fallowfield ME; Cook MG
    Histopathology; 1990 Nov; 17(5):397-400. PubMed ID: 2076866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ex vivo quality-switched ruby laser irradiation of cutaneous melanocytic lesions: persistence of S-100-, HMB-45- and Masson-positive cells.
    Kopera D; Hohenleutner U; Stolz W; Landthaler M
    Dermatology; 1997; 194(4):344-50. PubMed ID: 9252755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth control of melanoma cells and melanocytes by cytokines.
    Krasagakis K; Garbe C; Zouboulis CC; Orfanos CE
    Recent Results Cancer Res; 1995; 139():169-82. PubMed ID: 7597288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The epidermal melanocytes in patients with cutaneous malignant melanoma. A transmission electron microscopic investigation.
    Drzewiecki KT
    Scand J Plast Reconstr Surg; 1979; 13(3):393-400. PubMed ID: 94465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Melanocytes in development and cancer.
    Uong A; Zon LI
    J Cell Physiol; 2010 Jan; 222(1):38-41. PubMed ID: 19795394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine structural characterization of melanosomes in dysplastic nevi.
    Takahashi H; Horikoshi T; Jimbow K
    Cancer; 1985 Jul; 56(1):111-23. PubMed ID: 4005780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model.
    Chien AJ; Moore EC; Lonsdorf AS; Kulikauskas RM; Rothberg BG; Berger AJ; Major MB; Hwang ST; Rimm DL; Moon RT
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):1193-8. PubMed ID: 19144919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The density and distribution of melanocytes adjacent to melanoma and nonmelanoma skin cancers.
    Barlow JO; Maize J; Lang PG
    Dermatol Surg; 2007 Feb; 33(2):199-207. PubMed ID: 17300606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.