BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 38474411)

  • 1. Emerging Role of Autophagy in Governing Cellular Dormancy, Metabolic Functions, and Therapeutic Responses of Cancer Stem Cells.
    Tiwari M; Srivastava P; Abbas S; Jegatheesan J; Ranjan A; Sharma S; Maurya VP; Saxena AK; Sharma LK
    Cells; 2024 Mar; 13(5):. PubMed ID: 38474411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting redox regulation and autophagy systems in cancer stem cells.
    Khan SU; Rayees S; Sharma P; Malik F
    Clin Exp Med; 2023 Sep; 23(5):1405-1423. PubMed ID: 36473988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor dormancy and cancer stem cells: two sides of the same coin?
    Kleffel S; Schatton T
    Adv Exp Med Biol; 2013; 734():145-79. PubMed ID: 23143979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications.
    Li D; Peng X; He G; Liu J; Li X; Lin W; Fang J; Li X; Yang S; Yang L; Li H
    Cell Death Dis; 2023 Jul; 14(7):409. PubMed ID: 37422448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to Cell Death and Its Modulation in Cancer Stem Cells.
    Safa AR
    Crit Rev Oncog; 2016; 21(3-4):203-219. PubMed ID: 27915972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer Stem Cells and Their Therapeutic Usage.
    Osum M; Kalkan R
    Adv Exp Med Biol; 2023; 1436():69-85. PubMed ID: 36689167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory Role of Quiescence in the Biological Function of Cancer Stem Cells.
    Lee SH; Reed-Newman T; Anant S; Ramasamy TS
    Stem Cell Rev Rep; 2020 Dec; 16(6):1185-1207. PubMed ID: 32894403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of autophagy in breast cancer and breast cancer stem cells (Review).
    Han Y; Fan S; Qin T; Yang J; Sun Y; Lu Y; Mao J; Li L
    Int J Oncol; 2018 Apr; 52(4):1057-1070. PubMed ID: 29436618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem cell programs in cancer initiation, progression, and therapy resistance.
    Huang T; Song X; Xu D; Tiek D; Goenka A; Wu B; Sastry N; Hu B; Cheng SY
    Theranostics; 2020; 10(19):8721-8743. PubMed ID: 32754274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells.
    Rahman MA; Saha SK; Rahman MS; Uddin MJ; Uddin MS; Pang MG; Rhim H; Cho SG
    Front Cell Dev Biol; 2020; 8():283. PubMed ID: 32391363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular determinants of cancer stem cell dormancy--do age and coagulation system play a role?
    Rak J; Milsom C; Yu J
    APMIS; 2008; 116(7-8):660-76. PubMed ID: 18834410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities.
    Zou Q; Liu M; Liu K; Zhang Y; North BJ; Wang B
    Cell Oncol (Dordr); 2023 Jun; 46(3):545-570. PubMed ID: 36745329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing role of epigenetic modifiers and DNA oxidation in cell-autonomous regulation of Cancer stem cells.
    Ferrer-Diaz AI; Sinha G; Petryna A; Gonzalez-Bermejo R; Kenfack Y; Adetayo O; Patel SA; Hooda-Nehra A; Rameshwar P
    Cell Commun Signal; 2024 Feb; 22(1):119. PubMed ID: 38347590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting autophagy and lipid metabolism in cancer stem cells.
    Chakravarti B; Akhtar Siddiqui J; Anthony Sinha R; Raza S
    Biochem Pharmacol; 2023 Jun; 212():115550. PubMed ID: 37060962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications.
    Paul R; Dorsey JF; Fan Y
    Pharmacol Ther; 2022 Mar; 231():107985. PubMed ID: 34480963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy.
    Praharaj PP; Panigrahi DP; Bhol CS; Patra S; Mishra SR; Mahapatra KK; Behera BP; Singh A; Patil S; Bhutia SK
    Cancer Lett; 2021 Feb; 498():217-228. PubMed ID: 33186655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sec23a inhibits the self-renewal of melanoma cancer stem cells via inactivation of ER-phagy.
    Sun Z; Liu D; Zeng B; Zhao Q; Li X; Chen H; Wang J; Rosie Xing H
    Cell Commun Signal; 2022 Mar; 20(1):22. PubMed ID: 35236368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression.
    Bourguignon LY; Shiina M; Li JJ
    Adv Cancer Res; 2014; 123():255-75. PubMed ID: 25081533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting.
    Talukdar S; Bhoopathi P; Emdad L; Das S; Sarkar D; Fisher PB
    Adv Cancer Res; 2019; 141():43-84. PubMed ID: 30691685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy.
    Mukha A; Kahya U; Linge A; Chen O; Löck S; Lukiyanchuk V; Richter S; Alves TC; Peitzsch M; Telychko V; Skvortsov S; Negro G; Aschenbrenner B; Skvortsova II; Mirtschink P; Lohaus F; Hölscher T; Neubauer H; Rivandi M; Labitzky V; Lange T; Franken A; Behrens B; Stoecklein NH; Toma M; Sommer U; Zschaeck S; Rehm M; Eisenhofer G; Schwager C; Abdollahi A; Groeben C; Kunz-Schughart LA; Baretton GB; Baumann M; Krause M; Peitzsch C; Dubrovska A
    Theranostics; 2021; 11(16):7844-7868. PubMed ID: 34335968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.