These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38474675)

  • 1. Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium-Sulfur Batteries.
    Hu X; Zhu X; Ran Z; Liu S; Zhang Y; Wang H; Wei W
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllably Designed "Vice-Electrode" Interlayers Harvesting High Performance Lithium Sulfur Batteries.
    Hao Y; Xiong D; Liu W; Fan L; Li D; Li X
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40273-40280. PubMed ID: 29083856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium-Sulfur Batteries.
    Tian J; Ji G; Han X; Xing F; Gao Q
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries.
    Tu S; Chen X; Zhao X; Cheng M; Xiong P; He Y; Zhang Q; Xu Y
    Adv Mater; 2018 Nov; 30(45):e1804581. PubMed ID: 30255611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries.
    Ali T; Yan C
    ChemSusChem; 2020 Mar; 13(6):1447-1479. PubMed ID: 31436389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced cathodic free-standing interlayers for lithium-sulfur batteries: understanding, fabrication, and modification.
    Zhou J; Wu T; Zhou X; Xi J
    Phys Chem Chem Phys; 2022 Jul; 24(29):17383-17396. PubMed ID: 35848443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved performance of lithium-sulfur batteries by employing a sulfonated carbon nanoparticle-modified glass fiber separator.
    Ponnada S; Kiai MS; Gorle DB; Nowduri A
    Nanoscale Adv; 2021 Jul; 3(15):4492-4501. PubMed ID: 36133468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research Progress on Multifunctional Modified Separator for Lithium-Sulfur Batteries.
    Wang Y; Ai R; Wang F; Hu X; Zeng Y; Hou J; Zhao J; Zhang Y; Zhang Y; Li X
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations.
    Kim A; Dash JK; Patel R
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Capture and Conversion of Soluble Polysulfides in Li-S Batteries with Composite Freestanding Carbonaceous Interlayers.
    Zhang Z; Yang Y; Guo W; Chang G; Li J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9231-9241. PubMed ID: 35138791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive FeOOH as Multifunctional Interlayer for Superior Lithium-Sulfur Batteries.
    Wei B; Shang C; Wang X; Zhou G
    Small; 2020 Aug; 16(34):e2002789. PubMed ID: 32715639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable 3D Honeycombed Co
    Wu L; Cai C; Yu X; Chen Z; Hu Y; Yu F; Zhai S; Mei T; Yu L; Wang X
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35894-35904. PubMed ID: 35881975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of the Application of Modified Separators in Inhibiting the "shuttle effect" of Lithium-Sulfur Batteries.
    Zhang BW; Sun B; Fu P; Liu F; Zhu C; Xu BM; Pan Y; Chen C
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective.
    Zhang M; Zhang X; Liu S; Hou W; Lu Y; Hou L; Luo Y; Liu Y; Yuan C
    ChemSusChem; 2024 May; ():e202400538. PubMed ID: 38763902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Frameworks Functionalized Separators for Lithium-Sulfur Batteries.
    Chong YL; Zhao DD; Wang B; Feng L; Li SJ; Shao LX; Tong X; Du X; Cheng H; Zhuang JL
    Chem Rec; 2022 Oct; 22(10):e202200142. PubMed ID: 35833508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of MXene-Based Materials for Cathode in Lithium-Sulfur Batteries.
    Geng X; Yang L; Song P
    Chemistry; 2024 Mar; 30(13):e202303451. PubMed ID: 38050760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green Production of Biomass-Derived Carbon Materials for High-Performance Lithium-Sulfur Batteries.
    Ma C; Zhang M; Ding Y; Xue Y; Wang H; Li P; Wu D
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-Selective Separators for Addressing the Lithium-Sulfur Battery Challenges.
    Zhao Q; Hao Z; Tang J; Xu X; Liu J; Jin Y; Zhang Q; Wang H
    ChemSusChem; 2021 Feb; 14(3):792-807. PubMed ID: 33258550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries.
    Wang F; Han Y; Feng X; Xu R; Li A; Wang T; Deng M; Tong C; Li J; Wei Z
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Microtube Textile with MoS
    Yang J; Yu L; Zheng B; Li N; Xi J; Qiu X
    Adv Sci (Weinh); 2020 Nov; 7(21):1903260. PubMed ID: 33173722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.