These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38474906)

  • 1. Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection.
    Wu W; Pan Z; Zhou J; Wang Y; Ma J; Li J; Hu Y; Wen J; Wang X
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester with a Low Startup Wind Speed in Urban Self-Powered Sensing.
    Li G; Cui J; Liu T; Zheng Y; Hao C; Hao X; Xue C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Linear-Arc Composite Beam Piezoelectric Energy Harvester Modeling and Finite Element Analysis.
    Zhang X; Guo Y; Zhu F; Chen X; Tian H; Xu H
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester.
    Xu Q; Gao A; Li Y; Jin Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on nonlinear isometric L-shaped cantilever beam type piezoelectric wind energy harvester based on magnetic coupling.
    He L; Yu G; Han Y; Liu L; Hu D; Cheng G
    Rev Sci Instrum; 2022 Nov; 93(11):115004. PubMed ID: 36461430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harvesting Variable-Speed Wind Energy with a Dynamic Multi-Stable Configuration.
    Wang Y; Zhou Z; Liu Q; Qin W; Zhu P
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32204348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam.
    Wang H; Li B; Liu Y; Zhao W
    Rev Sci Instrum; 2019 Mar; 90(3):035001. PubMed ID: 30927805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Harvester with a Helix S-Type Vertical Axis to Capture Random Breeze Energy Efficiently.
    Zhang C; Zhang B; Liang J; Ming Z; Wen T; Yang X
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever.
    Xin M; Jiang X; Xu C; Yang J; Lu C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Influence of Coil Arrangement on the Output Characteristics of Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Sun Y; Du X; Liu F
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on a rotary piezoelectric wind energy harvester with bilateral excitation.
    He L; Zheng X; Li W; Gu X; Han Y; Cheng G
    Rev Sci Instrum; 2023 Feb; 94(2):025004. PubMed ID: 36859045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting.
    Peddigari M; Kim GY; Park CH; Min Y; Kim JW; Ahn CW; Choi JJ; Hahn BD; Choi JH; Park DS; Hong JK; Yeom JT; Park KI; Jeong DY; Yoon WH; Ryu J; Hwang GT
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31085985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.