These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38474951)

  • 1. Implementation of a High-Sensitivity Global Navigation Satellite System Receiver on a System-on-Chip Field-Programmable Gate Array Platform.
    Majoral M; Arribas J; Fernández-Prades C
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Flexible System-on-Chip Field-Programmable Gate Array Architecture for Prototyping Experimental Global Navigation Satellite System Receivers.
    Majoral M; Fernández-Prades C; Arribas J
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GNSS-ISE: Instruction Set Extension for GNSS Baseband Processing.
    Marcinek K; Pleskacz WA
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NaviSoC: High-Accuracy Low-Power GNSS SoC with an Integrated Application Processor.
    Borejko T; Marcinek K; Siwiec K; Narczyk P; Borkowski A; Butryn I; Łuczyk A; Pietroń D; Plasota M; Reszewicz S; Wiechowski Ł; Pleskacz WA
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hard SyDR: A Benchmarking Environment for Global Navigation Satellite System Algorithms.
    Grenier A; Lei J; Damsgaard HJ; Quintana-Ortí ES; Ometov A; Lohan ES; Nurmi J
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Performance Analysis of Signal Acquisition and Doppler Tracking in LEO Augmented GNSS Receiver.
    Cheng L; Dai Y; Guo W; Zheng J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Enhanced FGI-GSRx Software-Defined Receiver for the Execution of Long Datasets.
    Liaquat M; Bhuiyan MZH; Islam S; Pääkkönen I; Kaasalainen S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals.
    Marchan-Hernandez JF; Camps A; Rodriguez-Alvarez N; Bosch-Lluis X; Ramos-Perez I; Valencia E
    Sensors (Basel); 2008 May; 8(5):3005-3019. PubMed ID: 27879862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding.
    Huang KY; Juang JC; Tsai YF; Lin CT
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.
    Seo J; Chen YH; De Lorenzo DS; Lo S; Enge P; Akos D; Lee J
    Sensors (Basel); 2011; 11(9):8966-91. PubMed ID: 22164116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Framework to Emulate Spacecraft Orbital Positioning Using GNSS Hardware in the Loop.
    Forero D; Esteban S; Rodríguez-Polo Ó
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Multi-Antenna GNSS Receiver Performance under Jamming Attacks.
    Vagle N; Broumandan A; Lachapelle G
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27869672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.
    Xu H; Cui X; Lu M
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26978363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of GNSS Carrier Phase Data on a Moving Zero-Baseline in Urban and Aerial Navigation.
    Ruwisch F; Jain A; Schön S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and implementation of real-time software radio for anti-interference GPS/WAAS sensors.
    Chen YH; Juang JC; Seo J; Lo S; Akos DM; De Lorenzo DS; Enge P
    Sensors (Basel); 2012 Oct; 12(10):13417-40. PubMed ID: 23202002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System.
    van der Merwe JR; Contreras Franco D; Hansen J; Brieger T; Feigl T; Ott F; Jdidi D; Rügamer A; Felber W
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments.
    Elmezayen A; Karaim M; Elghamrawy H; Noureldin A
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GNSS Radio Frequency Interference Monitoring from LEO Satellites: An In-Laboratory Prototype.
    Troglia Gamba M; Polidori BD; Minetto A; Dovis F; Banfi E; Dominici F
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Real-Time GNSS-R System for Monitoring Sea Surface Wind Speed and Significant Wave Height.
    Xing J; Yu B; Yang D; Li J; Shi Z; Zhang G; Wang F
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Two-Stage Interference Suppression Scheme Based on Antenna Array for GNSS Jamming and Spoofing.
    Zhang J; Cui X; Xu H; Lu M
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.