BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38474977)

  • 1. Chlorophyll Fluorescence Imaging for Environmental Stress Diagnosis in Crops.
    Park B; Wi S; Chung H; Lee H
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].
    Wu Q; Sun H; Li MZ; Song YY; Zhang YE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):178-83. PubMed ID: 25993844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging.
    Feng X; Yu C; Chen Y; Peng J; Ye L; Shen T; Wen H; He Y
    Front Plant Sci; 2018; 9():468. PubMed ID: 29686693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves.
    Hák R; Lichtenthaler HK; Rinderle U
    Radiat Environ Biophys; 1990; 29(4):329-36. PubMed ID: 2281139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown.
    D'Ambrosio N; Szabo K; Lichtenthaler HK
    Radiat Environ Biophys; 1992; 31(1):51-62. PubMed ID: 1589574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral characteristics and quantitative analysis of leaf chlorophyll by reflectance spectroscopy based on a genetic algorithm in combination with partial least squares regression.
    Chen X; Dong Z; Liu J; Wang H; Zhang Y; Chen T; Du Y; Shao L; Xie J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118786. PubMed ID: 32854083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra.
    Panneton B; Guillaume S; Roger JM; Samson G
    Appl Spectrosc; 2010 Jan; 64(1):30-6. PubMed ID: 20132595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular structure of chlorophyll-protein complexes in relation to the chlorophyll a fluorescence of chloroplasts at room or liquid nitrogen temperature.
    Argyroudi AJ; Akoyunoglou G
    Arch Biochem Biophys; 1983 Dec; 227(2):469-77. PubMed ID: 6667028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.
    Murchie EH; Lawson T
    J Exp Bot; 2013 Oct; 64(13):3983-98. PubMed ID: 23913954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of chlorophyll fluorescence parameters of potato leaves based on continuous wavelet transform and spectral analysis.
    Zhao R; An L; Song D; Li M; Qiao L; Liu N; Sun H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119768. PubMed ID: 33971438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content.
    Lichtenthaler HK; Hak R; Rinderle U
    Photosynth Res; 1990 Sep; 25(3):295-8. PubMed ID: 24420359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel fluorescence spectroscopy method coupled with N-PLS-R and PLS-DA models for the quantification of cannabinoids and the classification of cannabis cultivars.
    Birenboim M; Kenigsbuch D; Shimshoni JA
    Phytochem Anal; 2023 Apr; 34(3):280-288. PubMed ID: 36597766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy.
    Liu J; Han J; Chen X; Shi L; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117202. PubMed ID: 31181506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging.
    Chaerle L; Leinonen I; Jones HG; Van Der Straeten D
    J Exp Bot; 2007; 58(4):773-84. PubMed ID: 17189594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.
    Kasajima I
    BMC Res Notes; 2017 Apr; 10(1):168. PubMed ID: 28446247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.
    Pandey JK; Dubey G; Gopal R
    J Photochem Photobiol B; 2015 Oct; 151():297-305. PubMed ID: 25228224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chlorophyll content nondestructive measurement method based on Vis/NIR spectroscopy].
    Li QB; Huang YW; Zhang GJ; Zhang QX; Li X; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3275-8. PubMed ID: 20210149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CCD-OMA device for the measurement of complete chlorophyll fluorescence emission spectra of leaves during the fluorescence induction kinetics.
    Szabó K; Lichtenthaler HK; Kocsányi L; Richter P
    Radiat Environ Biophys; 1992; 31(2):153-60. PubMed ID: 1609060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.