These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38475029)

  • 1. Intelligent, Flexible Artificial Throats with Sound Emitting, Detecting, and Recognizing Abilities.
    Fu J; Deng Z; Liu C; Liu C; Luo J; Wu J; Peng S; Song L; Li X; Peng M; Liu H; Zhou J; Qiao Y
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intelligent artificial throat with sound-sensing ability based on laser induced graphene.
    Tao LQ; Tian H; Liu Y; Ju ZY; Pang Y; Chen YQ; Wang DY; Tian XG; Yan JC; Deng NQ; Yang Y; Ren TL
    Nat Commun; 2017 Feb; 8():14579. PubMed ID: 28232739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat.
    Wei Y; Qiao Y; Jiang G; Wang Y; Wang F; Li M; Zhao Y; Tian Y; Gou G; Tan S; Tian H; Yang Y; Ren TL
    ACS Nano; 2019 Aug; 13(8):8639-8647. PubMed ID: 31268667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor.
    Ravenscroft D; Prattis I; Kandukuri T; Samad YA; Mallia G; Occhipinti LG
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Network-Enabled Flexible Pressure and Temperature Sensor with Honeycomb-like Architecture for Voice Recognition.
    Su Y; Ma K; Zhang X; Liu M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning-Combined Flexible Sensor for Tactile Detection and Voice Recognition.
    Xie J; Zhao Y; Zhu D; Yan J; Li J; Qiao M; He G; Deng S
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12551-12559. PubMed ID: 36808950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft Electronics for Health Monitoring Assisted by Machine Learning.
    Qiao Y; Luo J; Cui T; Liu H; Tang H; Zeng Y; Liu C; Li Y; Jian J; Wu J; Tian H; Yang Y; Ren TL; Zhou J
    Nanomicro Lett; 2023 Mar; 15(1):66. PubMed ID: 36918452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nanoparticle-Based Artificial Ear for Personalized Classification of Emotions in the Human Voice Using Deep Learning.
    Wang J; Suo J; Liu D; Zhao Y; Tian Y; Bryanston-Cross P; Li WJ; Wang Z
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):51274-51282. PubMed ID: 39285705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum.
    Li S; Tian J; Li K; Xu K; Zhang J; Chen T; Li Y; Wang H; Wu Q; Xie J; Men Y; Liu W; Zhang X; Cao W; Huang Z
    Adv Sci (Weinh); 2024 Nov; 11(42):e2405501. PubMed ID: 39301887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible MXene/Bacterial Cellulose Film Sound Detector Based on Piezoresistive Sensing Mechanism.
    Su T; Liu N; Lei D; Wang L; Ren Z; Zhang Q; Su J; Zhang Z; Gao Y
    ACS Nano; 2022 May; 16(5):8461-8471. PubMed ID: 35504043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing.
    Jung YH; Hong SK; Wang HS; Han JH; Pham TX; Park H; Kim J; Kang S; Yoo CD; Lee KJ
    Adv Mater; 2020 Sep; 32(35):e1904020. PubMed ID: 31617274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound-producing voice prostheses: 150 years of research.
    Verkerke GJ; Thomson SL
    Annu Rev Biomed Eng; 2014 Jul; 16():215-45. PubMed ID: 24905871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensors and Artificial Intelligence Methods and Algorithms for Human-Computer Intelligent Interaction: A Systematic Mapping Study.
    Šumak B; Brdnik S; Pušnik M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array.
    Ouyang Q; Yao C; Chen H; Song L; Zhang T; Chen D; Yang L; Chen M; Chen HJ; Peng Z; Xie X
    Biosens Bioelectron; 2024 Feb; 246():115873. PubMed ID: 38071853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic and sound intensity measurements in tracheoesophageal voice.
    Grolman W; Eerenstein SE; Tan FM; Tange RA; Schouwenburg PF
    ORL J Otorhinolaryngol Relat Spec; 2007; 69(2):68-76. PubMed ID: 17127821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolarynx in voice rehabilitation.
    Liu H; Ng ML
    Auris Nasus Larynx; 2007 Sep; 34(3):327-32. PubMed ID: 17239553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying individuals with recent COVID-19 through voice classification using deep learning.
    Suppakitjanusant P; Sungkanuparph S; Wongsinin T; Virapongsiri S; Kasemkosin N; Chailurkit L; Ongphiphadhanakul B
    Sci Rep; 2021 Sep; 11(1):19149. PubMed ID: 34580407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent sensor positioning and orientation through constructive neural network-embedded INS/GPS integration algorithms.
    Chiang KW; Chang HW
    Sensors (Basel); 2010; 10(10):9252-85. PubMed ID: 22163407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal efficiency in tracheoesophageal phonation.
    Grolman W; Eerenstein SE; Tange RA; Canu G; Bogaardt H; Dijkhuis JP; Dreschler WA; Schouwenburg PF
    Auris Nasus Larynx; 2008 Mar; 35(1):83-8. PubMed ID: 17959326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective assessment of autophony during phonation in the diagnosis of patulous Eustachian tube patients.
    Ikeda R; Hamanishi S; Kikuchi T; Oshima H; Kawamura Y; Kusano Y; Kawase T; Katori Y; Wada H; Kobayashi T
    Auris Nasus Larynx; 2021 Aug; 48(4):738-744. PubMed ID: 33384180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.