These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38475146)

  • 1. Exploring the Possibility of Photoplethysmography-Based Human Activity Recognition Using Convolutional Neural Networks.
    Ryu S; Yun S; Lee S; Jeong IC
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks.
    Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biometric recognition based on scalable end-to-end convolutional neural network using photoplethysmography: A comparative study.
    Wang D; Hu Q; Yang C
    Comput Biol Med; 2022 Aug; 147():105654. PubMed ID: 35635902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals.
    Afzali Arani MS; Costa DE; Shihab E
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiclass Arrhythmia Detection and Classification From Photoplethysmography Signals Using a Deep Convolutional Neural Network.
    Liu Z; Zhou B; Jiang Z; Chen X; Li Y; Tang M; Miao F
    J Am Heart Assoc; 2022 Apr; 11(7):e023555. PubMed ID: 35322685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving More with Less: A Lightweight Deep Learning Solution for Advanced Human Activity Recognition (HAR).
    AlMuhaideb S; AlAbdulkarim L; AlShahrani DM; AlDhubaib H; AlSadoun DE
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks.
    Reiss A; Indlekofer I; Schmidt P; Van Laerhoven K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InsightSleepNet: the interpretable and uncertainty-aware deep learning network for sleep staging using continuous Photoplethysmography.
    Nam B; Bark B; Lee J; Kim IY
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):50. PubMed ID: 38355559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study.
    Kwon S; Hong J; Choi EK; Lee B; Baik C; Lee E; Jeong ER; Koo BK; Oh S; Yi Y
    J Med Internet Res; 2020 May; 22(5):e16443. PubMed ID: 32348254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lightweight Hybrid Model Using Multiscale Markov Transition Field for Real-Time Quality Assessment of Photoplethysmography Signals.
    Liu J; Hu S; Wang Y; Hu Q; Wang D; Yang C
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1078-1088. PubMed ID: 37948137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Atrial Fibrillation From Variable-Duration ECG Signal Based on Time-Adaptive Densely Network and Feature Enhancement Strategy.
    Zhang X; Jiang M; Polat K; Alhudhaif A; Hemanth J; Wu W
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):944-955. PubMed ID: 36367916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust PPG motion artifact detection using a 1-D convolution neural network.
    Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E
    Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining One-Dimensional Convolutional Models in Human Activity Recognition and Biometric Identification Tasks.
    Aquino G; Costa MGF; Costa Filho CFF
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion.
    Orphanidou C
    Comput Biol Med; 2017 Feb; 81():45-54. PubMed ID: 28012294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study.
    Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y
    JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COVID-19 Detection Using Photoplethysmography and Neural Networks.
    Lombardi S; Francia P; Deodati R; Calamai I; Luchini M; Spina R; Bocchi L
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical intelligence using PPG signals and hybrid learning at the edge to detect fatigue in physical activities.
    Liu P; Song Y; Yang X; Li D; Khosravi M
    Sci Rep; 2024 Jul; 14(1):16149. PubMed ID: 38997404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.