These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38475404)

  • 1. Carboxymethylated and Sulfated Furcellaran from
    Štěpánková K; Ozaltin K; Sáha P; Vargun E; Domincová-Bergerová E; Vesel A; Mozetič M; Lehocký M
    Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfation of furcellaran and its effect on hemocompatibility in vitro.
    Štěpánková K; Ozaltin K; Gorejová R; Doudová H; Bergerová ED; Maskalová I; Stupavská M; Sťahel P; Trunec D; Pelková J; Mozetič M; Lehocky M
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128840. PubMed ID: 38103479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Furcellaran Surface Deposition and Its Potential in Biomedical Applications.
    Štěpánková K; Ozaltin K; Pelková J; Pištěková H; Karakurt I; Káčerová S; Lehocky M; Humpolicek P; Vesel A; Mozetic M
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity.
    Abbasi-Ravasjani S; Seddiqi H; Moghaddaszadeh A; Ghiasvand ME; Jin J; Oliaei E; Bacabac RG; Klein-Nulend J
    Front Bioeng Biotechnol; 2022; 10():957263. PubMed ID: 36213076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach.
    Yin HM; Qian J; Zhang J; Lin ZF; Li JS; Xu JZ; Li ZM
    Polymers (Basel); 2016 May; 8(6):. PubMed ID: 30979308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming.
    Ren Q; Zhu X; Li W; Wu M; Cui S; Ling Y; Ma X; Wang G; Wang L; Zheng W
    Int J Biol Macromol; 2022 Apr; 205():740-748. PubMed ID: 35331790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials.
    Swilem AE; Lehocký M; Humpolíček P; Kucekova Z; Novák I; Mičušík M; Abd El-Rehim HA; Hegazy EA; Hamed AA; Kousal J
    J Biomed Mater Res A; 2017 Nov; 105(11):3176-3188. PubMed ID: 28707422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction.
    Zimina A; Senatov F; Choudhary R; Kolesnikov E; Anisimova N; Kiselevskiy M; Orlova P; Strukova N; Generalova M; Manskikh V; Gromov A; Karyagina A
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33316955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.
    Bhaskar B; Owen R; Bahmaee H; Wally Z; Sreenivasa Rao P; Reilly GC
    J Biomed Mater Res A; 2018 May; 106(5):1334-1340. PubMed ID: 29316238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.
    Mi HY; Salick MR; Jing X; Jacques BR; Crone WC; Peng XF; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4767-76. PubMed ID: 24094186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering.
    Chi M; Li N; Cui J; Karlin S; Rohr N; Sharma N; Thieringer FM
    Front Bioeng Biotechnol; 2022; 10():989729. PubMed ID: 36159699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study.
    Bodnárová S; Gromošová S; Hudák R; Rosocha J; Živčák J; Plšíková J; Vojtko M; Tóth T; Harvanová D; Ižariková G; Danišovič Ľ
    Acta Bioeng Biomech; 2019; 21(4):101-110. PubMed ID: 32022801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold-cell/tissue interactions.
    Liu P; Sun L; Liu P; Yu W; Zhang Q; Zhang W; Ma J; Liu P; Shen J
    J Mater Chem B; 2018 Dec; 6(46):7605-7613. PubMed ID: 32254882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cold plasma treatment on polylactic acid and polylactic acid/poly (ethylene glycol) films developed as a drug delivery system for streptomycin sulfate.
    Rafique A; Bulbul YE; Usman A; Raza ZA; Oksuz AU
    Int J Biol Macromol; 2023 Apr; 235():123857. PubMed ID: 36871685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.
    Pandiyaraj KN; Kumar AA; Ramkumar MC; Sachdev A; Gopinath P; Cools P; De Geyter N; Morent R; Deshmukh RR; Hegde P; Han C; Nadagouda MN
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():908-18. PubMed ID: 26952498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior.
    Daskalova A; Angelova L; Filipov E; Aceti D; Mincheva R; Carrete X; Kerdjoudj H; Dubus M; Chevrier J; Trifonov A; Buchvarov I
    Polymers (Basel); 2021 Aug; 13(15):. PubMed ID: 34372179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide.
    Zhou J; Guo X; Zheng Q; Wu Y; Cui F; Wu B
    Colloids Surf B Biointerfaces; 2017 Apr; 152():124-132. PubMed ID: 28103529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.