BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38475727)

  • 1. Machine learning on alignment features for parent-of-origin classification of simulated hybrid RNA-seq.
    Miller JR; Adjeroh DA
    BMC Bioinformatics; 2024 Mar; 25(1):109. PubMed ID: 38475727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
    Raghupathy N; Choi K; Vincent MJ; Beane GL; Sheppard KS; Munger SC; Korstanje R; Pardo-Manual de Villena F; Churchill GA
    Bioinformatics; 2018 Jul; 34(13):2177-2184. PubMed ID: 29444201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference genome and transcriptome informed by the sex chromosome complement of the sample increase ability to detect sex differences in gene expression from RNA-Seq data.
    Olney KC; Brotman SM; Andrews JP; Valverde-Vesling VA; Wilson MA
    Biol Sex Differ; 2020 Jul; 11(1):42. PubMed ID: 32693839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CADBURE: A generic tool to evaluate the performance of spliced aligners on RNA-Seq data.
    Kumar PK; Hoang TV; Robinson ML; Tsonis PA; Liang C
    Sci Rep; 2015 Aug; 5():13443. PubMed ID: 26304587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASElux: an ultra-fast and accurate allelic reads counter.
    Miao Z; Alvarez M; Pajukanta P; Ko A
    Bioinformatics; 2018 Apr; 34(8):1313-1320. PubMed ID: 29186329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations.
    Munger SC; Raghupathy N; Choi K; Simons AK; Gatti DM; Hinerfeld DA; Svenson KL; Keller MP; Attie AD; Hibbs MA; Graber JH; Chesler EJ; Churchill GA
    Genetics; 2014 Sep; 198(1):59-73. PubMed ID: 25236449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.
    Zhang Y; Liu X; MacLeod J; Liu J
    BMC Genomics; 2018 Dec; 19(1):971. PubMed ID: 30591034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping RNA-seq reads to transcriptomes efficiently based on learning to hash method.
    Yu X; Liu X
    Comput Biol Med; 2020 Jan; 116():103539. PubMed ID: 31765913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.
    Parker MT; Knop K; Barton GJ; Simpson GG
    Genome Biol; 2021 Mar; 22(1):72. PubMed ID: 33648554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias.
    Zhan S; Griswold C; Lukens L
    BMC Genomics; 2021 Apr; 22(1):285. PubMed ID: 33874908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment.
    Zhang Z; Huang S; Wang J; Zhang X; Pardo Manuel de Villena F; McMillan L; Wang W
    Bioinformatics; 2013 Jul; 29(13):i291-9. PubMed ID: 23812996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies.
    Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV
    BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
    Zhang Z; Wang W
    Bioinformatics; 2014 Jun; 30(12):i283-i292. PubMed ID: 24931995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TAP: a targeted clinical genomics pipeline for detecting transcript variants using RNA-seq data.
    Chiu R; Nip KM; Chu J; Birol I
    BMC Med Genomics; 2018 Sep; 11(1):79. PubMed ID: 30200994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OSA: a fast and accurate alignment tool for RNA-Seq.
    Hu J; Ge H; Newman M; Liu K
    Bioinformatics; 2012 Jul; 28(14):1933-4. PubMed ID: 22592379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STAR: ultrafast universal RNA-seq aligner.
    Dobin A; Davis CA; Schlesinger F; Drenkow J; Zaleski C; Jha S; Batut P; Chaisson M; Gingeras TR
    Bioinformatics; 2013 Jan; 29(1):15-21. PubMed ID: 23104886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted RNA-seq improves efficiency, resolution, and accuracy of allele specific expression for human term placentas.
    Wu W; Lovett JL; Shedden K; Strassmann BI; Vincenz C
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34009305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing.
    Fan J; Hu J; Xue C; Zhang H; Susztak K; Reilly MP; Xiao R; Li M
    PLoS Genet; 2020 May; 16(5):e1008786. PubMed ID: 32392242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpliceJumper: a classification-based approach for calling splicing junctions from RNA-seq data.
    Chu C; Li X; Wu Y
    BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S10. PubMed ID: 26678515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq.
    Williams CR; Baccarella A; Parrish JZ; Kim CC
    BMC Bioinformatics; 2017 Jan; 18(1):38. PubMed ID: 28095772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.