These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 38476112)

  • 1. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices.
    Apoorva S; Nguyen NT; Sreejith KR
    Lab Chip; 2024 Mar; 24(7):1833-1866. PubMed ID: 38476112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices.
    Jeerapan I; Moonla C; Thavarungkul P; Kanatharana P
    Prog Mol Biol Transl Sci; 2022; 187(1):249-279. PubMed ID: 35094777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Healthcare through Sensor-Enabled Digital Twins in Smart Environments: A Comprehensive Analysis.
    Adibi S; Rajabifard A; Shojaei D; Wickramasinghe N
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics.
    Mejía-Salazar JR; Rodrigues Cruz K; Materón Vásques EM; Novais de Oliveira O
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic solutions for biofluids handling in on-skin wearable systems.
    Kashaninejad N; Nguyen NT
    Lab Chip; 2023 Mar; 23(5):913-937. PubMed ID: 36628970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic-Based Non-Invasive Wearable Biosensors for Real-Time Monitoring of Sweat Biomarkers.
    Pour SRS; Calabria D; Emamiamin A; Lazzarini E; Pace A; Guardigli M; Zangheri M; Mirasoli M
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38248406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of artificial intelligence in wearable devices: Opportunities and challenges.
    Nahavandi D; Alizadehsani R; Khosravi A; Acharya UR
    Comput Methods Programs Biomed; 2022 Jan; 213():106541. PubMed ID: 34837860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers.
    Ardalan S; Hosseinifard M; Vosough M; Golmohammadi H
    Biosens Bioelectron; 2020 Nov; 168():112450. PubMed ID: 32877780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics for personalized drug delivery.
    Alavi SE; Alharthi S; Alavi SF; Alavi SZ; Zahra GE; Raza A; Ebrahimi Shahmabadi H
    Drug Discov Today; 2024 Apr; 29(4):103936. PubMed ID: 38428803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects.
    Shumba AT; Montanaro T; Sergi I; Bramanti A; Ciccarelli M; Rispoli A; Carrizzo A; De Vittorio M; Patrono L
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidics in smart food safety.
    Gong L; Lin Y
    Adv Food Nutr Res; 2024; 111():305-354. PubMed ID: 39103216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Microfluidics for Continuous Assay.
    Lin PH; Nien HH; Li BR
    Annu Rev Anal Chem (Palo Alto Calif); 2023 Jun; 16(1):181-203. PubMed ID: 36888989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Artificial intelligence in wearable electrocardiogram monitoring].
    Wang X; Li Q; Ma C; Zhang S; Lin Y; Li J; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Dec; 40(6):1084-1092. PubMed ID: 38151930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics by Additive Manufacturing for Wearable Biosensors: A Review.
    Padash M; Enz C; Carrara S
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review.
    Shajari S; Kuruvinashetti K; Komeili A; Sundararaj U
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secure Smart Wearable Computing through Artificial Intelligence-Enabled Internet of Things and Cyber-Physical Systems for Health Monitoring.
    Ramasamy LK; Khan F; Shah M; Prasad BVVS; Iwendi C; Biamba C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the Next Generation Human-Machine Interaction: Headworn Wearable Devices.
    Gao B; Jiang J; Zhou S; Li J; Zhou Q; Li X
    Anal Chem; 2024 Jul; 96(26):10477-10487. PubMed ID: 38888091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring. Part 2: artificial intelligence.
    Sitaula C; Grooby E; Kwok TC; Sharkey D; Marzbanrad F; Malhotra A
    Pediatr Res; 2023 Jan; 93(2):426-436. PubMed ID: 36513806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices.
    Saha T; Mukherjee S; Dickey MD; Velev OD
    Lab Chip; 2024 Feb; 24(5):1244-1265. PubMed ID: 38197332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm in Smart Healthcare.
    Xie Y; Lu L; Gao F; He SJ; Zhao HJ; Fang Y; Yang JM; An Y; Ye ZW; Dong Z
    Curr Med Sci; 2021 Dec; 41(6):1123-1133. PubMed ID: 34950987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.