These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38476118)

  • 1. Multimodal fusion of EMG and vision for human grasp intent inference in prosthetic hand control.
    Zandigohar M; Han M; Sharif M; Günay SY; Furmanek MP; Yarossi M; Bonato P; Onal C; Padır T; Erdoğmuş D; Schirner G
    Front Robot AI; 2024; 11():1312554. PubMed ID: 38476118
    [No Abstract]   [Full Text] [Related]  

  • 2. HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
    Han M; Günay SY; Schirner G; Padır T; Erdoğmuş D
    Intell Serv Robot; 2020 Jan; 13(1):179-185. PubMed ID: 33312264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing.
    Ceolini E; Frenkel C; Shrestha SB; Taverni G; Khacef L; Payvand M; Donati E
    Front Neurosci; 2020; 14():637. PubMed ID: 32903824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping.
    Cognolato M; Atzori M; Gassert R; Müller H
    Front Artif Intell; 2021; 4():744476. PubMed ID: 35146422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of Upcoming Human Grasp Using EMG During Reach-to-Grasp Movement.
    Han M; Zandigohar M; Günay SY; Schirner G; Erdoğmuş D
    Front Neurosci; 2022; 16():849991. PubMed ID: 35720725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high-density EMG signals.
    Montazerin M; Rahimian E; Naderkhani F; Atashzar SF; Yanushkevich S; Mohammadi A
    Sci Rep; 2023 Jul; 13(1):11000. PubMed ID: 37419881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifications of Dynamic EMG in Hand Gesture and Unsupervised Grasp Motion Segmentation.
    Han M; Zandigohar M; Furmanek MP; Yarossi M; Schirner G; Erdogmus D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():359-364. PubMed ID: 34891309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle Synergy-based Grasp Classification for Robotic Hand Prosthetics.
    Yağmur Günay S; Quivira F; Erdoğmuş D
    Int Conf Pervasive Technol Relat Assist Environ; 2017 Jun; 2017():335-338. PubMed ID: 31111121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intent Prediction Based on Biomechanical Coordination of EMG and Vision-Filtered Gaze for End-Point Control of an Arm Prosthesis.
    Krausz NE; Lamotte D; Batzianoulis I; Hargrove LJ; Micera S; Billard A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1471-1480. PubMed ID: 32386160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 12. Decoding the grasping intention from electromyography during reaching motions.
    Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A
    J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography.
    Kim S; Shin DY; Kim T; Lee S; Hyun JK; Park SM
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online Grasp Force Estimation From the Transient EMG.
    Martinez IJR; Mannini A; Clemente F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2333-2341. PubMed ID: 32894718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper-limb prosthetic control using wearable multichannel mechanomyography.
    Wilson S; Vaidyanathan R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1293-1298. PubMed ID: 28813999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding of unimanual and bimanual reach-and-grasp actions from EMG and IMU signals in persons with cervical spinal cord injury.
    Wolf M; Rupp R; Schwarz A
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38471169
    [No Abstract]   [Full Text] [Related]  

  • 19. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation.
    Dosen S; Cipriani C; Kostić M; Controzzi M; Carrozza MC; Popović DB
    J Neuroeng Rehabil; 2010 Aug; 7():42. PubMed ID: 20731834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of grasp types through principal components of DWT based EMG features.
    Kakoty NM; Hazarika SM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975398. PubMed ID: 22275601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.