These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38476166)

  • 21. The odorant binding protein gene family from the genome of silkworm, Bombyx mori.
    Gong DP; Zhang HJ; Zhao P; Xia QY; Xiang ZH
    BMC Genomics; 2009 Jul; 10():332. PubMed ID: 19624863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Positive and negative effects of leaf shelters on herbivorous insects: linking multiple herbivore species on a willow.
    Nakamura M; Ohgushi T
    Oecologia; 2003 Aug; 136(3):445-9. PubMed ID: 12768405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New methylcyclopentanoid terpenes from the larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora).
    Meinwald J; Jones TH; Eisner T; Hicks K
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2189-93. PubMed ID: 267917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Culturable bacterial microbiota of Plagiodera versicolora (L.) (Coleoptera: Chrysomelidae) and virulence of the isolated strains.
    Demirci M; Sevim E; Demir İ; Sevim A
    Folia Microbiol (Praha); 2013 May; 58(3):201-10. PubMed ID: 23054688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specialist leaf beetle larvae use volatiles from willow leaves infested by conspecifics for reaggregation in a tree.
    Yoneya K; Ozawa R; Takabayashi J
    J Chem Ecol; 2010 Jul; 36(7):671-9. PubMed ID: 20544261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complete mitochondrial genome of
    Xie WW; Sheng LJ; Wan Y; Weng XQ; Liang GH; Zhang FP; Chen H
    Mitochondrial DNA B Resour; 2020 Oct; 5(3):3600-3601. PubMed ID: 33367025
    [No Abstract]   [Full Text] [Related]  

  • 27. Transcriptome analysis in different developmental stages of Batocera horsfieldi (Coleoptera: Cerambycidae) and comparison of candidate olfactory genes.
    Yang H; Cai Y; Zhuo Z; Yang W; Yang C; Zhang J; Yang Y; Wang B; Guan F
    PLoS One; 2018; 13(2):e0192730. PubMed ID: 29474419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant stress and insect performance: cottonwood, ozone and a leaf beetle.
    Coleman JS; Jones CG
    Oecologia; 1988 Jun; 76(1):57-61. PubMed ID: 28312379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis.
    Liu NY; Li ZB; Zhao N; Song QS; Zhu JY; Yang B
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar; 25():73-85. PubMed ID: 29175757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of putative odorant binding proteins in the peach fruit borer Carposina sasakii Matsumura (Lepidoptera: Carposinidae) by transcriptome analysis and their expression profile.
    Li J; Wang X; Zhang L
    Biochem Biophys Res Commun; 2019 Jan; 508(4):1024-1030. PubMed ID: 30545637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic insight into the insecticidal potential of a new Pseudomonas chlororaphis isolate.
    Wang H; Zhang Y; Dai D; Fu J; Sung Kim D; Li S; Zhang J; Wang Y; Zhang F
    J Econ Entomol; 2024 Feb; 117(1):82-92. PubMed ID: 38146627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current and potential biotechnological applications of odorant-binding proteins.
    Brito NF; Oliveira DS; Santos TC; Moreira MF; Melo ACA
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8631-8648. PubMed ID: 32888038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope.
    Li DZ; Duan SG; Yang RN; Yi SC; Liu A; Abdelnabby HE; Wang MQ
    Insect Biochem Mol Biol; 2022 Jan; 140():103677. PubMed ID: 34763091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity of phenolic glycoside induction in willow seedlings (Salix sericea) in response to herbivory.
    Fields MJ; Orians CM
    J Chem Ecol; 2006 Dec; 32(12):2647-56. PubMed ID: 17131187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and evolution of olfactory genes in the small poplar longhorn beetle Saperda populnea.
    Wang Y; Zhang J; Chen Q; Zhao H; Wang J; Wen M; Xi J; Ren B
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Jun; 26():58-68. PubMed ID: 29626726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential Expression Analysis of Chemoreception Genes in the Striped Flea Beetle Phyllotreta striolata Using a Transcriptomic Approach.
    Wu Z; Bin S; He H; Wang Z; Li M; Lin J
    PLoS One; 2016; 11(4):e0153067. PubMed ID: 27064483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of odorant binding proteins in the diamondback moth, Plutella xylostella.
    Cai LJ; Zheng LS; Huang YP; Xu W; You MS
    Insect Sci; 2021 Aug; 28(4):987-1004. PubMed ID: 32436367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential cooperations between odorant-binding proteins of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae).
    Wang B; Guan L; Zhong T; Li K; Yin J; Cao Y
    PLoS One; 2013; 8(12):e84795. PubMed ID: 24376847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects.
    Pelosi P; Iovinella I; Zhu J; Wang G; Dani FR
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):184-200. PubMed ID: 28480618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects.
    Xu YL; He P; Zhang L; Fang SQ; Dong SL; Zhang YJ; Li F
    BMC Genomics; 2009 Dec; 10():632. PubMed ID: 20034407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.