These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38476818)

  • 1. High-Throughput Spike Detection in Greenhouse Cultivated Grain Crops with Attention Mechanisms-Based Deep Learning Models.
    Ullah S; Panzarová K; Trtílek M; Lexa M; Máčala V; Neumann K; Altmann T; Hejátko J; Pernisová M; Gladilin E
    Plant Phenomics; 2024; 6():0155. PubMed ID: 38476818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and analysis of wheat spikes using Convolutional Neural Networks.
    Hasan MM; Chopin JP; Laga H; Miklavcic SJ
    Plant Methods; 2018; 14():100. PubMed ID: 30459822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wheat spike detection method based on Transformer.
    Zhou Q; Huang Z; Zheng S; Jiao L; Wang L; Wang R
    Front Plant Sci; 2022; 13():1023924. PubMed ID: 36340370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRCNN-AA-CIF: An automatic detection model of colon polyps based on attention awareness and context information fusion.
    Gong R; He S; Tian T; Chen J; Hao Y; Qiao C
    Comput Biol Med; 2023 May; 158():106787. PubMed ID: 37044051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning.
    Jinnai S; Yamazaki N; Hirano Y; Sugawara Y; Ohe Y; Hamamoto R
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and characterization of spike architecture based on deep learning and X-ray computed tomography in barley.
    Ling Y; Zhao Q; Liu W; Wei K; Bao R; Song W; Nie X
    Plant Methods; 2023 Oct; 19(1):115. PubMed ID: 37891590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting spikes of wheat plants using neural networks with Laws texture energy.
    Qiongyan L; Cai J; Berger B; Okamoto M; Miklavcic SJ
    Plant Methods; 2017; 13():83. PubMed ID: 29046709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WheatSpikeNet: an improved wheat spike segmentation model for accurate estimation from field imaging.
    Batin MA; Islam M; Hasan MM; Azad A; Alyami SA; Hossain MA; Miklavcic SJ
    Front Plant Sci; 2023; 14():1226190. PubMed ID: 37692423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MCI-frcnn: A deep learning method for topological micro-domain boundary detection.
    Tian SZ; Yin P; Jing K; Yang Y; Xu Y; Huang G; Ning D; Fullwood MJ; Zheng M
    Front Cell Dev Biol; 2022; 10():1050769. PubMed ID: 36531953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images.
    Zhu C; Chai X; Xiao Y; Liu X; Zhang R; Yang Z; Wang Z
    Diagnostics (Basel); 2024 Jan; 14(3):. PubMed ID: 38337784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Face-based age estimation using improved Swin Transformer with attention-based convolution.
    Shi C; Zhao S; Zhang K; Wang Y; Liang L
    Front Neurosci; 2023; 17():1136934. PubMed ID: 37123378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet.
    Wen C; Wu J; Chen H; Su H; Chen X; Li Z; Yang C
    Front Plant Sci; 2022; 13():821717. PubMed ID: 35310650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FEA-Swin: Foreground Enhancement Attention Swin Transformer Network for Accurate UAV-Based Dense Object Detection.
    Xu W; Zhang C; Wang Q; Dai P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swin-HSTPS: Research on Target Detection Algorithms for Multi-Source High-Resolution Remote Sensing Images.
    Fang K; Ouyang J; Hu B
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-grained weed recognition using Swin Transformer and two-stage transfer learning.
    Wang Y; Zhang S; Dai B; Yang S; Song H
    Front Plant Sci; 2023; 14():1134932. PubMed ID: 36993854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-to-end deep learning framework for printed circuit board manufacturing defect classification.
    Bhattacharya A; Cloutier SG
    Sci Rep; 2022 Jul; 12(1):12559. PubMed ID: 35869131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Object Detection Based on Swin Deformable Transformer-BiPAFPN-YOLOX.
    Shi P; Chen X; Qi H; Zhang C; Liu Z
    Comput Intell Neurosci; 2023; 2023():4228610. PubMed ID: 36936669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing vitiligo diagnosis with ResNet and Swin transformer deep learning models: a study on performance and interpretability.
    Zhong F; He K; Ji M; Chen J; Gao T; Li S; Zhang J; Li C
    Sci Rep; 2024 Apr; 14(1):9127. PubMed ID: 38644396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.