These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38477451)

  • 1. Self-Assembly of Organic Semiconductors on Strained Graphene under Strain-Induced Pseudo-Electric Fields.
    Hwang J; Park J; Choi J; Lee T; Lee HC; Cho K
    Adv Sci (Weinh); 2024 May; 11(19):e2400598. PubMed ID: 38477451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-Transfer-Controlled Growth of Organic Semiconductor Crystals on Graphene.
    Nguyen NN; Lee HC; Yoo MS; Lee E; Lee H; Lee SB; Cho K
    Adv Sci (Weinh); 2020 Mar; 7(6):1902315. PubMed ID: 32195079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. van der Waals Epitaxy of Organic Semiconductor Thin Films on Atomically Thin Graphene Templates for Optoelectronic Applications.
    Nguyen NN; Lee H; Lee HC; Cho K
    Acc Chem Res; 2022 Mar; 55(5):673-684. PubMed ID: 35142485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-Field-Tunable Growth of Organic Semiconductor Crystals on Graphene.
    Nguyen NN; Lee HC; Kang B; Jo M; Cho K
    Nano Lett; 2019 Mar; 19(3):1758-1766. PubMed ID: 30747540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxially grown strained pentacene thin film on graphene membrane.
    Kim K; Santos EJ; Lee TH; Nishi Y; Bao Z
    Small; 2015 May; 11(17):2037-43. PubMed ID: 25565340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomically thin epitaxial template for organic crystal growth using graphene with controlled surface wettability.
    Nguyen NN; Jo SB; Lee SK; Sin DH; Kang B; Kim HH; Lee H; Cho K
    Nano Lett; 2015 Apr; 15(4):2474-84. PubMed ID: 25798655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene.
    Sun X; Lu Z; Xiang Y; Wang Y; Shi J; Wang GC; Washington MA; Lu TM
    ACS Nano; 2018 Jun; 12(6):6100-6108. PubMed ID: 29746775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of C60 and Pentacene Adsorbates on the Electrical Properties of CVD Graphene on SiO
    Oswald J; Beretta D; Stiefel M; Furrer R; Vuillaume D; Calame M
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disordered Phase-Assisted Growth of Organic Semiconductor Crystals on Self-Assembled Monolayer Templates.
    Kim MJ; Yoon TW; Lee J; Lee J; Kim H; Chung S; Cho K; Ham DS; Lee HC; Kang B
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18144-18152. PubMed ID: 36995023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field and Thermal Emission Limited Charge Injection in Au-C60-Graphene van der Waals Vertical Heterostructures for Organic Electronics.
    Oswald J; Beretta D; Stiefel M; Furrer R; Lohde S; Vuillaume D; Calame M
    ACS Appl Nano Mater; 2023 Jun; 6(11):9444-9452. PubMed ID: 37325015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures.
    Kim K; Lee TH; Santos EJ; Jo PS; Salleo A; Nishi Y; Bao Z
    ACS Nano; 2015 Jun; 9(6):5922-8. PubMed ID: 26027690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Arrangement and Charge Transfer in C
    Ojeda-Aristizabal C; Santos EJG; Onishi S; Yan A; Rasool HI; Kahn S; Lv Y; Latzke DW; Velasco J; Crommie MF; Sorensen M; Gotlieb K; Lin CY; Watanabe K; Taniguchi T; Lanzara A; Zettl A
    ACS Nano; 2017 May; 11(5):4686-4693. PubMed ID: 28437062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene.
    Kang DH; Sun H; Luo M; Lu K; Chen M; Kim Y; Jung Y; Gao X; Parluhutan SJ; Ge J; Koh SW; Giovanni D; Sum TC; Wang QJ; Li H; Nam D
    Nat Commun; 2021 Aug; 12(1):5087. PubMed ID: 34429419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.
    Beck JH; Barton RA; Cox MP; Alexandrou K; Petrone N; Olivieri G; Yang S; Hone J; Kymissis I
    Nano Lett; 2015 Apr; 15(4):2555-61. PubMed ID: 25774924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.
    Wu B; Zhao Y; Nan H; Yang Z; Zhang Y; Zhao H; He D; Jiang Z; Liu X; Li Y; Shi Y; Ni Z; Wang J; Xu JB; Wang X
    Nano Lett; 2016 Jun; 16(6):3754-9. PubMed ID: 27183049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Transport Across Au-P3HT-Graphene van der Waals Vertical Heterostructures.
    Oswald J; Beretta D; Stiefel M; Furrer R; Romio A; Mansour MD; Vuillaume D; Calame M
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48240-48249. PubMed ID: 36239396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth Model of van der Waals Epitaxy of Films: A Case of AlN Films on Multilayer Graphene/SiC.
    Xu Y; Cao B; Li Z; Cai D; Zhang Y; Ren G; Wang J; Shi L; Wang C; Xu K
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44001-44009. PubMed ID: 29181968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote epitaxy using graphene enables growth of stress-free GaN.
    Journot T; Okuno H; Mollard N; Michon A; Dagher R; Gergaud P; Dijon J; Kolobov AV; Hyot B
    Nanotechnology; 2019 Dec; 30(50):505603. PubMed ID: 31530744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular self-assembly on two-dimensional atomic crystals: insights from molecular dynamics simulations.
    Zhao Y; Wu Q; Chen Q; Wang J
    J Phys Chem Lett; 2015 Nov; 6(22):4518-24. PubMed ID: 26523464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Dry Transfer of Graphene Film by van der Waals Interactions.
    Yang SJ; Choi S; Odongo Ngome FO; Kim KJ; Choi SY; Kim CJ
    Nano Lett; 2019 Jun; 19(6):3590-3596. PubMed ID: 31082260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.