These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38477497)
1. The reduction behavior of sulfurized polyacrylonitrile (SPAN) in lithium-sulfur batteries using a carbonate electrolyte: a computational study. Klostermann SV; Kappler J; Waigum A; Buchmeiser MR; Köhn A; Kästner J Phys Chem Chem Phys; 2024 Mar; 26(13):9998-10007. PubMed ID: 38477497 [TBL] [Abstract][Full Text] [Related]
2. Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li Perez Beltran S; Balbuena PB ACS Appl Mater Interfaces; 2021 Jan; 13(1):491-502. PubMed ID: 33377389 [TBL] [Abstract][Full Text] [Related]
3. Two Competing Reactions of Sulfurized Polyacrylonitrile Produce High-Performance Lithium-Sulfur Batteries. Li H; Xue W; Wang L; Liu T ACS Appl Mater Interfaces; 2021 Jun; 13(21):25002-25009. PubMed ID: 34015915 [TBL] [Abstract][Full Text] [Related]
4. Reversible Solid-Solid Conversion of Sulfurized Polyacrylonitrile Cathodes in Lithium-Sulfur Batteries by Weakly Solvating Ether Electrolytes. Ma T; Ni Y; Li D; Zha Z; Jin S; Zhang W; Jia L; Sun Q; Xie W; Tao Z; Chen J Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202310761. PubMed ID: 37668230 [TBL] [Abstract][Full Text] [Related]
5. Strategy for High-Energy Li-S Battery Coupling with a Li Metal Anode and a Sulfurized Polyacrylonitrile Cathode. Park H; Kang H; Kim H; Kansara S; Allen JL; Tran D; Sun HH; Hwang JY ACS Appl Mater Interfaces; 2023 Oct; 15(39):45876-45885. PubMed ID: 37726216 [TBL] [Abstract][Full Text] [Related]
6. Dual additive of lithium titanate and sulfurized pyrolyzed polyacrylonitrile in sulfur cathode for high rate performance in lithium-sulfur battery. Takemoto K; Wakasugi J; Kubota M; Kanamura K; Abe H Phys Chem Chem Phys; 2022 Dec; 25(1):351-358. PubMed ID: 36477769 [TBL] [Abstract][Full Text] [Related]
7. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the performance of a lithium-sulfur battery with spatially confined mesoporous nanoreactors in sulfurized polyacrylonitrile cathodes. Liu H; Yan T; Xu Q; Zhang Y; Li Y; Han N; Liu H; Zhang X J Colloid Interface Sci; 2025 Jan; 678(Pt C):829-840. PubMed ID: 39316898 [TBL] [Abstract][Full Text] [Related]
9. Effect of Electrolyte Chemistry and Sulfur Content in Li||Sulfurized Polyacrylonitrile (SPAN) Batteries. Yu K; Cai G; Li M; Wu J; Gupta V; Lee DJ; Holoubek J; Chen Z ACS Appl Mater Interfaces; 2023 Sep; 15(37):43724-43731. PubMed ID: 37695100 [TBL] [Abstract][Full Text] [Related]
10. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
11. Tailoring Solvation Solvent in Localized High-Concentration Electrolytes for Lithium||Sulfurized Polyacrylonitrile. Kim JM; Gao P; Miao Q; Zhao Q; Rahman MM; Chen P; Zhang X; Hu E; Liu P; Zhang JG; Xu W ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38620048 [TBL] [Abstract][Full Text] [Related]
12. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498 [TBL] [Abstract][Full Text] [Related]
13. Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries. Jiang Z; Guo HJ; Zeng Z; Han Z; Hu W; Wen R; Xie J ACS Nano; 2020 Oct; 14(10):13784-13793. PubMed ID: 32924432 [TBL] [Abstract][Full Text] [Related]
14. Pinned Electrode/Electrolyte Interphase and Its Formation Origin for Sulfurized Polyacrylonitrile Cathode in Stable Lithium Batteries. Zhang X; Gao P; Wu Z; Engelhard MH; Cao X; Jia H; Xu Y; Liu H; Wang C; Liu J; Zhang JG; Liu P; Xu W ACS Appl Mater Interfaces; 2022 Nov; 14(46):52046-52057. PubMed ID: 36377408 [TBL] [Abstract][Full Text] [Related]
15. High-performance lithium-sulfur batteries enabled by regulating Li Lin Q; Huang L; Liu W; Li Z; Fang R; Wang DW; Yang QH; Lv W Phys Chem Chem Phys; 2021 Oct; 23(38):21385-21398. PubMed ID: 34549210 [TBL] [Abstract][Full Text] [Related]
16. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Wei S; Ma L; Hendrickson KE; Tu Z; Archer LA J Am Chem Soc; 2015 Sep; 137(37):12143-52. PubMed ID: 26325146 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. Kim HM; Hwang JY; Aurbach D; Sun YK J Phys Chem Lett; 2017 Nov; 8(21):5331-5337. PubMed ID: 29039678 [TBL] [Abstract][Full Text] [Related]
18. In Situ Generated Li Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570 [TBL] [Abstract][Full Text] [Related]
19. Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. Wang K; Zhao T; Zhang N; Feng T; Li L; Wu F; Chen R Nanoscale; 2021 Oct; 13(39):16690-16695. PubMed ID: 34590652 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Electrochemical Lithiation and Dissolution Mechanisms at a Sulfurized Polyacrylonitrile Cathode Surface. Kuai D; Wang S; Perez-Beltran S; Yu S; Real GA; Liu P; Balbuena PB ACS Energy Lett; 2024 Mar; 9(3):810-818. PubMed ID: 38482180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]