These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38477695)
1. Dissolution-Induced Surface Reconstruction of Ni Zhang H; Li S; Xu J; Sun X; Xia J; She G; Yu J; Ru C; Luo J; Meng X; Mu L; Shi W Small; 2024 Aug; 20(32):e2311738. PubMed ID: 38477695 [TBL] [Abstract][Full Text] [Related]
2. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437 [TBL] [Abstract][Full Text] [Related]
3. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes. Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824 [TBL] [Abstract][Full Text] [Related]
4. Enhanced photoelectrochemical hydrogen production efficiency of MoS Alarawi A; Ramalingam V; Fu HC; Varadhan P; Yang R; He JH Opt Express; 2019 Apr; 27(8):A352-A363. PubMed ID: 31052887 [TBL] [Abstract][Full Text] [Related]
5. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO Jun SE; Hong SP; Choi S; Kim C; Ji SG; Park IJ; Lee SA; Yang JW; Lee TH; Sohn W; Kim JY; Jang HW Small; 2021 Oct; 17(39):e2103457. PubMed ID: 34453489 [TBL] [Abstract][Full Text] [Related]
6. Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni-Mo/TiO Baek M; Zafar M; Kim S; Kim DH; Jeon CW; Lee J; Yong K ChemSusChem; 2018 Oct; 11(20):3679-3688. PubMed ID: 30134016 [TBL] [Abstract][Full Text] [Related]
7. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. Yang Y; Wang M; Zhang P; Wang W; Han H; Sun L ACS Appl Mater Interfaces; 2016 Nov; 8(44):30143-30151. PubMed ID: 27762535 [TBL] [Abstract][Full Text] [Related]
8. Seebeck-voltage-triggered self-biased photoelectrochemical water splitting using HfO Jung JY; Woong Kim D; Kim DH; Joo Park T; Wehrspohn RB; Lee JH Sci Rep; 2019 Jun; 9(1):9132. PubMed ID: 31235765 [TBL] [Abstract][Full Text] [Related]
9. High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. Wang HP; Sun K; Noh SY; Kargar A; Tsai ML; Huang MY; Wang D; He JH Nano Lett; 2015 May; 15(5):2817-24. PubMed ID: 25665138 [TBL] [Abstract][Full Text] [Related]
10. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760 [TBL] [Abstract][Full Text] [Related]
11. Ultrathin MoS Zhou Q; Su S; Hu D; Lin L; Yan Z; Gao X; Zhang Z; Liu JM Nanotechnology; 2018 Mar; 29(10):105402. PubMed ID: 29381478 [TBL] [Abstract][Full Text] [Related]
12. CoSe Basu M; Zhang ZW; Chen CJ; Lu TH; Hu SF; Liu RS ACS Appl Mater Interfaces; 2016 Oct; 8(40):26690-26696. PubMed ID: 27635665 [TBL] [Abstract][Full Text] [Related]
13. Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation. Zhao S; Yuan G; Wang Q; Liu W; Wang R; Yang S Nanoscale; 2020 Jan; 12(1):316-325. PubMed ID: 31825048 [TBL] [Abstract][Full Text] [Related]
14. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP Chen F; Zhu Q; Wang Y; Cui W; Su X; Li Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):31025-31031. PubMed ID: 27768279 [TBL] [Abstract][Full Text] [Related]
15. Interface-Engineered Ni-Coated CdTe Heterojunction Photocathode for Enhanced Photoelectrochemical Hydrogen Evolution. Jian JX; Xie LH; Mumtaz A; Baines T; Major JD; Tong QX; Sun J ACS Appl Mater Interfaces; 2023 May; 15(17):21057-21065. PubMed ID: 37079896 [TBL] [Abstract][Full Text] [Related]
16. Hole-Storage Enhanced a-Si Photocathodes for Efficient Hydrogen Production. Zhang D; Du M; Wang P; Wang H; Shi W; Gao Y; Karuturi S; Catchpole K; Zhang J; Fan F; Shi J; Liu S Angew Chem Int Ed Engl; 2021 May; 60(21):11966-11972. PubMed ID: 33590572 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus-Rich Colloidal Cobalt Diphosphide (CoP Li H; Wen P; Itanze DS; Kim MW; Adhikari S; Lu C; Jiang L; Qiu Y; Geyer SM Adv Mater; 2019 Jun; 31(24):e1900813. PubMed ID: 31058405 [TBL] [Abstract][Full Text] [Related]
18. Charge Transfer Kinetics and Thermodynamics Control the Energy Conversion Efficiency of a Gallium Phosphide Solar Hydrogen Photocathode. Becker K; Wang L; Osterloh FE J Phys Chem C Nanomater Interfaces; 2024 Oct; 128(40):16915-16929. PubMed ID: 39416808 [TBL] [Abstract][Full Text] [Related]
19. Functional Integration of Catalysts with Si Nanowire Photocathodes for Efficient Utilization of Photogenerated Charge Carriers. Lim SY; Seo D; Jang MS; Chung TD ACS Omega; 2021 Aug; 6(34):22311-22316. PubMed ID: 34497920 [TBL] [Abstract][Full Text] [Related]
20. Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production. Cheng W; Singh N; Elliott W; Lee J; Rassoolkhani A; Jin X; McFarland EW; Mubeen S Adv Sci (Weinh); 2018 Jan; 5(1):1700362. PubMed ID: 29375966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]