BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38478009)

  • 1. Evaluation of ED-XRF for the detection of inorganic adulterants in turmeric, paprika and oregano.
    Cottenet G; Andrey D; Dubascoux S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 May; 41(5):461-467. PubMed ID: 38478009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach.
    Black C; Haughey SA; Chevallier OP; Galvin-King P; Elliott CT
    Food Chem; 2016 Nov; 210():551-7. PubMed ID: 27211681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of Analytical Tools for the Identification of Adulterants in Commonly Traded Herbs and Spices.
    Osman AG; Raman V; Haider S; Ali Z; Chittiboyina AG; Khan IA
    J AOAC Int; 2019 Mar; 102(2):376-385. PubMed ID: 30646970
    [No Abstract]   [Full Text] [Related]  

  • 4. Food fraud in oregano: Pesticide residues as adulteration markers.
    Drabova L; Alvarez-Rivera G; Suchanova M; Schusterova D; Pulkrabova J; Tomaniova M; Kocourek V; Chevallier O; Elliott C; Hajslova J
    Food Chem; 2019 Mar; 276():726-734. PubMed ID: 30409655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical evaluation of ambient mass spectrometry coupled with chemometrics for the early detection of adulteration scenarios in Origanum vulgare L.
    Damiani T; Dreolin N; Stead S; Dall'Asta C
    Talanta; 2021 May; 227():122116. PubMed ID: 33714458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of metal contents in spices and herbs from Saudi Arabia.
    Seddigi ZS; Kandhro GA; Shah F; Danish E; Soylak M
    Toxicol Ind Health; 2016 Feb; 32(2):260-9. PubMed ID: 24097370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA Metabarcoding Workflow to Identify Species in Spices and Herbs.
    Cottenet G; Cavin C; Blancpain C; Chuah PF; Pellesi R; Suman M; Nogueira S; Gadanho M
    J AOAC Int; 2022 Dec; 106(1):65-72. PubMed ID: 35980160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic contamination of Italian and Tunisian culinary herbs and spices.
    Di Bella G; Potortì AG; Ben Tekaya A; Beltifa A; Ben Mansour H; Sajia E; Bartolomeo G; Naccari C; Dugo G; Lo Turco V
    J Environ Sci Health B; 2019; 54(5):345-356. PubMed ID: 30773128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of herbs and spices to reduce lipid oxidation during heating and gastrointestinal digestion of a beef product.
    Van Hecke T; Ho PL; Goethals S; De Smet S
    Food Res Int; 2017 Dec; 102():785-792. PubMed ID: 29196013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of handheld near infrared spectroscopy to detect food adulteration: Results of a global, multi-instrument inter-laboratory study.
    McGrath TF; Haughey SA; Islam M; Elliott CT;
    Food Chem; 2021 Aug; 353():128718. PubMed ID: 33838431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticizers and BPA in spices and aromatic herbs of Mediterranean areas.
    Lo Turco V; Potortì AG; Ben Mansour H; Dugo G; Di Bella G
    Nat Prod Res; 2020 Jan; 34(1):87-92. PubMed ID: 30905174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study.
    Wielogorska E; Chevallier O; Black C; Galvin-King P; Delêtre M; Kelleher CT; Haughey SA; Elliott CT
    Food Chem; 2018 Jan; 239():32-39. PubMed ID: 28873575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new high-throughput screening method to determine multiple dyes in herbs and spices.
    Bessaire T; Savoy MC; Mujahid C; Tarres A; Mottier P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jun; 36(6):836-850. PubMed ID: 31009321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcoholic extraction enables EPR analysis to characterize radiation-induced cellulosic signals in spices.
    Ahn JJ; Sanyal B; Akram K; Kwon JH
    J Agric Food Chem; 2014 Nov; 62(46):11089-98. PubMed ID: 25347931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spice and Herb Frauds: Types, Incidence, and Detection: The State of the Art.
    Velázquez R; Rodríguez A; Hernández A; Casquete R; Benito MJ; Martín A
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of IR spectroscopy for authentication of adulterated turmeric powder using pattern recognition.
    Khodabakhshian R; Bayati MR; Emadi B
    Food Chem; 2021 Dec; 364():130406. PubMed ID: 34174644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.
    Lu QY; Summanen PH; Lee RP; Huang J; Henning SM; Heber D; Finegold SM; Li Z
    J Food Sci; 2017 Aug; 82(8):1807-1813. PubMed ID: 28678344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay.
    Vallverdú-Queralt A; Regueiro J; Martínez-Huélamo M; Rinaldi Alvarenga JF; Leal LN; Lamuela-Raventos RM
    Food Chem; 2014 Jul; 154():299-307. PubMed ID: 24518346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration.
    Lohumi S; Lee H; Kim MS; Qin J; Kandpal LM; Bae H; Rahman A; Cho BK
    PLoS One; 2018; 13(4):e0195253. PubMed ID: 29708973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.