BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38478597)

  • 1. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives.
    Wang Y; Yang X; Meng Y; Wen Z; Han R; Hu X; Sun B; Kang F; Li B; Zhou D; Wang C; Wang G
    Chem Rev; 2024 Mar; 124(6):3494-3589. PubMed ID: 38478597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halide-Based Materials and Chemistry for Rechargeable Batteries.
    Zhao X; Zhao-Karger Z; Fichtner M; Shen X
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5902-5949. PubMed ID: 31359549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives.
    Tu J; Song WL; Lei H; Yu Z; Chen LL; Wang M; Jiao S
    Chem Rev; 2021 Apr; 121(8):4903-4961. PubMed ID: 33728899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Chemistry for Wide-Temperature Sodium-Ion Batteries.
    Zhang F; He B; Xin Y; Zhu T; Zhang Y; Wang S; Li W; Yang Y; Tian H
    Chem Rev; 2024 Apr; 124(8):4778-4821. PubMed ID: 38563799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries.
    Jin T; Wang Y; Hui Z; Qie B; Li A; Paley D; Xu B; Wang X; Chitu A; Zhai H; Gong T; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(19):17333-17340. PubMed ID: 31013429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.
    Wu F; Maier J; Yu Y
    Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?
    Doi K; Yamada Y; Okoshi M; Ono J; Chou CP; Nakai H; Yamada A
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8024-8028. PubMed ID: 30951223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries.
    Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y
    Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes.
    von Aspern N; Röschenthaler GV; Winter M; Cekic-Laskovic I
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):15978-16000. PubMed ID: 31339214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rechargeable Calcium-Sulfur Batteries Enabled by an Efficient Borate-Based Electrolyte.
    Li Z; Vinayan BP; Diemant T; Behm RJ; Fichtner M; Zhao-Karger Z
    Small; 2020 Oct; 16(39):e2001806. PubMed ID: 32812367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Materials chemistry for rechargeable zinc-ion batteries.
    Zhang N; Chen X; Yu M; Niu Z; Cheng F; Chen J
    Chem Soc Rev; 2020 Jul; 49(13):4203-4219. PubMed ID: 32478772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorinated cation introduces new interphasial chemistries to enable high-voltage lithium metal batteries.
    Liu Q; Jiang W; Xu J; Xu Y; Yang Z; Yoo DJ; Pupek KZ; Wang C; Liu C; Xu K; Zhang Z
    Nat Commun; 2023 Jun; 14(1):3678. PubMed ID: 37344449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.