These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38478892)

  • 1. Water Molecules Confined in Cryptophane Nanocages: Structures and Dynamics Driven by Hydrogen Bonding and Water Chains.
    Hilla P; Vaara J
    J Phys Chem B; 2024 Mar; 128(12):3027-3036. PubMed ID: 38478892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR chemical shift of confined
    Hilla P; Vaara J
    Phys Chem Chem Phys; 2023 Aug; 25(34):22719-22733. PubMed ID: 37606522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xe affinities of water-soluble cryptophanes and the role of confined water.
    Gao L; Liu W; Lee OS; Dmochowski IJ; Saven JG
    Chem Sci; 2015 Dec; 6(12):7238-7248. PubMed ID: 29861959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics and exchange of xenon and water in a prototypic cryptophane-A biosensor structure.
    Hilla P; Vaara J
    Phys Chem Chem Phys; 2022 Aug; 24(30):17946-17950. PubMed ID: 35748333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
    Bai Y; Hill PA; Dmochowski IJ
    Anal Chem; 2012 Nov; 84(22):9935-41. PubMed ID: 23106513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes.
    Berthault P; Desvaux H; Wendlinger T; Gyejacquot M; Stopin A; Brotin T; Dutasta JP; Boulard Y
    Chemistry; 2010 Nov; 16(43):12941-6. PubMed ID: 20886471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isomer-Dependent Escape Rate of Xenon from a Water-Soluble Cryptophane Cage Studied by Ab Initio Molecular Dynamics.
    Pollet R; Dognon JP; Berthault P
    Chemphyschem; 2024 Jan; 25(2):e202300509. PubMed ID: 37905939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A water-soluble Xe@cryptophane-111 complex exhibits very high thermodynamic stability and a peculiar (129)Xe NMR chemical shift.
    Fairchild RM; Joseph AI; Holman KT; Fogarty HA; Brotin T; Dutasta JP; Boutin C; Huber G; Berthault P
    J Am Chem Soc; 2010 Nov; 132(44):15505-7. PubMed ID: 20958059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diastereomeric Xe chemical shifts in tethered cryptophane cages.
    Ruiz EJ; Sears DN; Pines A; Jameson CJ
    J Am Chem Soc; 2006 Dec; 128(51):16980-8. PubMed ID: 17177449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and Dynamics of Complex Guest Molecules in Confinement, Revealed by Solid-State NMR, Molecular Dynamics, and Calorimetry.
    Haro Mares NB; Döller SC; Wissel T; Hoffmann M; Vogel M; Buntkowsky G
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Physicochemical Properties of Cryptophazane-A Soluble and Functionalizable C
    Vigier C; Fayolle D; El Siblani H; Sopkova-de Oliveira Santos J; Fabis F; Cailly T; Dubost E
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202208580. PubMed ID: 36111509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.
    Hiratsuka M; Ohmura R; Sum AK; Alavi S; Yasuoka K
    Phys Chem Chem Phys; 2015 May; 17(19):12639-47. PubMed ID: 25905113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2.
    Alavi S; Ohmura R; Ripmeester JA
    J Chem Phys; 2011 Feb; 134(5):054702. PubMed ID: 21303147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptophane Nanoscale Assemblies Expand
    Zemerov SD; Roose BW; Greenberg ML; Wang Y; Dmochowski IJ
    Anal Chem; 2018 Jun; 90(12):7730-7738. PubMed ID: 29782149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination Cages Based on Bis(pyrazolylpyridine) Ligands: Structures, Dynamic Behavior, Guest Binding, and Catalysis.
    Ward MD; Hunter CA; Williams NH
    Acc Chem Res; 2018 Sep; 51(9):2073-2082. PubMed ID: 30085644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Methoxy Groups in Cryptophanes for Complexation of Xenon: Conformational Selection Evidence from
    Berthault P; Boutin C; Léonce E; Jeanneau E; Brotin T
    Chemphyschem; 2017 Jun; 18(12):1561-1568. PubMed ID: 28394036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendronized cryptophanes as water-soluble xenon hosts for (129)Xe magnetic resonance imaging.
    Tyagi R; Witte C; Haag R; Schröder L
    Org Lett; 2014 Sep; 16(17):4436-9. PubMed ID: 25152959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptophane-xenon complexes for
    Zemerov SD; Dmochowski IJ
    RSC Adv; 2021; 11(13):7693-7703. PubMed ID: 34745572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.