BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38479152)

  • 1. Long-short diffeomorphism memory network for weakly-supervised ultrasound landmark tracking.
    Liu Z; Yang B; Shen Y; Ni X; Tsaftaris SA; Zhou H
    Med Image Anal; 2024 May; 94():103138. PubMed ID: 38479152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking 3D ultrasound anatomical landmarks via three orthogonal plane-based scale discriminative correlation filter network.
    Huang Y; He J; Wu X; Zhao X; Wu J
    Med Phys; 2021 May; 48(5):2127-2135. PubMed ID: 33619737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landmark tracking in liver US images using cascade convolutional neural networks with long short-term memory.
    Zhang Y; Dai X; Tian Z; Lei Y; Wynne JF; Patel P; Chen Y; Liu T; Yang X
    Meas Sci Technol; 2023 May; 34(5):054002. PubMed ID: 36743834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking.
    Huang P; Yu G; Lu H; Liu D; Xing L; Yin Y; Kovalchuk N; Xing L; Li D
    Med Phys; 2019 May; 46(5):2275-2285. PubMed ID: 30912590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive online 3D target tracking with population-based generative networks for image-guided radiotherapy.
    Romaguera LV; Mezheritsky T; Mansour R; Tanguay W; Kadoury S
    Int J Comput Assist Radiol Surg; 2021 Jul; 16(7):1213-1225. PubMed ID: 34114173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supervised context-aware correlation filter for robust landmark tracking in liver ultrasound sequences.
    Ma L; Wang J; Gong S; Lan L; Geng L; Wang S; Feng X
    Biomed Tech (Berl); 2024 Feb; ():. PubMed ID: 38353097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion tracking in the liver: validation of a method based on 4D ultrasound using a nonrigid registration technique.
    Vijayan S; Klein S; Hofstad EF; Lindseth F; Ystgaard B; Langø T
    Med Phys; 2014 Aug; 41(8):082903. PubMed ID: 25086560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi
    Wang Y; Fu T; Wang Y; Xiao D; Lin Y; Fan J; Song H; Liu F; Yang J
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36070774
    [No Abstract]   [Full Text] [Related]  

  • 9. Temporal contexts for motion tracking in ultrasound sequences with information bottleneck.
    Sun M; Huang W; Zhang H; Shi Y; Wang J; Gong Q; Wang X
    Med Phys; 2023 Sep; 50(9):5553-5567. PubMed ID: 36866782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based motion tracking using ultrasound images.
    Dai X; Lei Y; Roper J; Chen Y; Bradley JD; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Dec; 48(12):7747-7756. PubMed ID: 34724712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking.
    Yang L; Georgescu B; Zheng Y; Wang Y; Meer P; Comaniciu D
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1921-32. PubMed ID: 21642040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for tracking organ motion on diagnostic ultrasound images.
    Kubota Y; Matsumura A; Fukahori M; Minohara S; Yasuda S; Nagahashi H
    Med Phys; 2014 Sep; 41(9):092901. PubMed ID: 25186417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid deformable registration method to generate motion-compensated 3D virtual MRI for fusion with interventional real-time 3D ultrasound.
    Mitra J; Bhushan C; Ghose S; Mills D; Patel A; Chan H; Tarasek M; Foo T; Wells S; Jupitz S; Bednarz B; Brace C; Holmes J; Yeo D
    Int J Comput Assist Radiol Surg; 2023 Aug; 18(8):1501-1509. PubMed ID: 36648702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels.
    Shepard AJ; Wang B; Foo TKF; Bednarz BP
    Med Phys; 2017 Nov; 44(11):5889-5900. PubMed ID: 28898419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning.
    Huang P; Su L; Chen S; Cao K; Song Q; Kazanzides P; Iordachita I; Lediju Bell MA; Wong JW; Li D; Ding K
    Phys Med Biol; 2019 Sep; 64(18):185006. PubMed ID: 31323649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly-supervised learning for catheter segmentation in 3D frustum ultrasound.
    Yang H; Shan C; Kolen AF; With PHN
    Comput Med Imaging Graph; 2022 Mar; 96():102037. PubMed ID: 35121377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust motion tracking in liver from 2D ultrasound images using supporters.
    Ozkan E; Tanner C; Kastelic M; Mattausch O; Makhinya M; Goksel O
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):941-950. PubMed ID: 28332160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins.
    De Luca V; Banerjee J; Hallack A; Kondo S; Makhinya M; Nouri D; Royer L; Cifor A; Dardenne G; Goksel O; Gooding MJ; Klink C; Krupa A; Le Bras A; Marchal M; Moelker A; Niessen WJ; Papiez BW; Rothberg A; Schnabel J; van Walsum T; Harris E; Lediju Bell MA; Tanner C
    Med Phys; 2018 Nov; 45(11):4986-5003. PubMed ID: 30168159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-aware deep neural networks for needle tip localization in 2D ultrasound.
    Mwikirize C; Kimbowa AB; Imanirakiza S; Katumba A; Nosher JL; Hacihaliloglu I
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):819-827. PubMed ID: 33840037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FPSN-FNCC: an accurate and fast motion tracking algorithm in 3D ultrasound for image-guided interventions.
    He J; Shen C; Chen Y; Huang Y; Wu J
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 33975283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.