These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38479267)
1. Conductive and capacitive network for enriching the exoelectrogens and enhancing the extracellular electron transfer in microbial fuel cells. Cheng X; Qiu Y; Wang Y; Yu M; Qi J; Ma Z; Sun T; Liu S J Colloid Interface Sci; 2024 Jun; 664():309-318. PubMed ID: 38479267 [TBL] [Abstract][Full Text] [Related]
2. Enhanced microorganism attachment and flavin excretion in microbial fuel cells via an N,S-codoped carbon microflower anode. Cheng X; Liu B; Qiu Y; Liu K; Fang Z; Qi J; Ma Z; Sun T; Liu S J Colloid Interface Sci; 2023 Oct; 648():327-337. PubMed ID: 37301157 [TBL] [Abstract][Full Text] [Related]
3. 3D Hierarchical Co Wang Y; Cheng X; Liu K; Dai X; Qi J; Ma Z; Qiu Y; Liu S ACS Appl Mater Interfaces; 2022 Aug; 14(31):35809-35821. PubMed ID: 35912639 [TBL] [Abstract][Full Text] [Related]
4. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer. Zou J; Chang Q; Guo C; Yan M J Environ Manage; 2023 Nov; 346():119048. PubMed ID: 37742561 [TBL] [Abstract][Full Text] [Related]
5. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells. Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496 [TBL] [Abstract][Full Text] [Related]
6. Anode amendment with kaolin and activated carbon increases electricity generation in a microbial fuel cell. Hirsch LO; Dubrovin IA; Gandu B; Emanuel E; Kjellerup BV; Ugur GE; Schechter A; Cahan R Bioelectrochemistry; 2023 Oct; 153():108486. PubMed ID: 37302334 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electricity generation and storage by nitrogen-doped hierarchically porous carbon modification of the capacitive bioanode in microbial fuel cells. Wu J; Liu R; Dong P; Li N; He W; Feng Y; Liu J Sci Total Environ; 2023 Feb; 858(Pt 1):159688. PubMed ID: 36302411 [TBL] [Abstract][Full Text] [Related]
8. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972 [TBL] [Abstract][Full Text] [Related]
9. High-Performance Macroporous Free-Standing Microbial Fuel Cell Anode Derived from Grape for Efficient Power Generation and Brewery Wastewater Treatment. Sun JZ; Shu QC; Sun HW; Liu YC; Yang XY; Zhang YX; Wang G Molecules; 2024 Jun; 29(12):. PubMed ID: 38931000 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous boost of anodic electron transfer and exoelectrogens enrichment by decorating electrospinning carbon nanofibers in microbial fuel cell. Lin X; Zheng L; Zhang M; Qin Y; Liu Y; Li H; Li C Chemosphere; 2022 Dec; 308(Pt 2):136434. PubMed ID: 36113652 [TBL] [Abstract][Full Text] [Related]
11. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. Liu K; Ma Z; Li X; Qiu Y; Liu D; Liu S Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203925 [TBL] [Abstract][Full Text] [Related]
12. Enhancing extracellular electron transfer through selective enrichment of Geobacter with Fe@CN-modified carbon-based anode in microbial fuel cells. Cheng XL; Xu Q; Yang QW; Tian RR; Li B; Yan S; Zhang XY; Zhou J; Yong XY Environ Sci Pollut Res Int; 2023 Mar; 30(11):28640-28651. PubMed ID: 36396764 [TBL] [Abstract][Full Text] [Related]
13. Novel Gas Diffusion Cloth Bioanodes for High-Performance Methane-Powered Microbial Fuel Cells. Yu L; Yang Z; He Q; Zeng RJ; Bai Y; Zhou S Environ Sci Technol; 2019 Jan; 53(1):530-538. PubMed ID: 30484637 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Yu YY; Guo CX; Yong YC; Li CM; Song H Chemosphere; 2015 Dec; 140():26-33. PubMed ID: 25439129 [TBL] [Abstract][Full Text] [Related]
16. Enhanced electroactive bacteria enrichment and facilitated extracellular electron transfer in microbial fuel cells via polydopamine coated graphene aerogel anode. Guo W; Chen Y; Wang J; Cui L; Yan Y Bioelectrochemistry; 2024 Dec; 160():108769. PubMed ID: 38955054 [TBL] [Abstract][Full Text] [Related]
17. Bimetal-organic framework-derived porous CoFe Ren T; Liu Y; Shi C; Li C J Colloid Interface Sci; 2023 Aug; 643():428-436. PubMed ID: 37086532 [TBL] [Abstract][Full Text] [Related]
18. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer. Wang G; Chen L; Xing Y; Sun C; Fu P; Li Q; Chen R Sci Total Environ; 2023 Dec; 904():166549. PubMed ID: 37633395 [TBL] [Abstract][Full Text] [Related]
19. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells]. Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785 [TBL] [Abstract][Full Text] [Related]
20. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Sun M; Zhang F; Tong ZH; Sheng GP; Chen YZ; Zhao Y; Chen YP; Zhou SY; Liu G; Tian YC; Yu HQ Biosens Bioelectron; 2010 Oct; 26(2):338-43. PubMed ID: 20801013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]