These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38479343)

  • 21. Neuromechanical assessment of knee joint instability during perturbed gait in patients with knee osteoarthritis.
    Schrijvers JC; van den Noort JC; van der Esch M; Harlaar J
    J Biomech; 2021 Mar; 118():110325. PubMed ID: 33601186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slowing down to preserve balance in the presence of optical flow perturbations.
    Shelton AD; McTaggart EM; Allen JL; Mercer VS; Franz JR
    Gait Posture; 2022 Jul; 96():365-370. PubMed ID: 35839534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking.
    van den Bogaart M; Bruijn SM; van Dieën JH; Meyns P
    J Biomech; 2020 Apr; 103():109660. PubMed ID: 32171496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
    Nestico J; Novak A; Perry SD; Mansfield A
    Gait Posture; 2021 May; 86():94-100. PubMed ID: 33711616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of physical and temporal certainty on human locomotion with discrete underfoot perturbations.
    Kreter N; Lybbert C; Gordon KE; Fino PC
    J Exp Biol; 2022 Oct; 225(19):. PubMed ID: 36124619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations.
    McCrum C; Karamanidis K; Grevendonk L; Zijlstra W; Meijer K
    Geroscience; 2020 Feb; 42(1):39-49. PubMed ID: 31776885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retention of improvement in gait stability over 14 weeks due to trip-perturbation training is dependent on perturbation dose.
    König M; Epro G; Seeley J; Catalá-Lehnen P; Potthast W; Karamanidis K
    J Biomech; 2019 Feb; 84():243-246. PubMed ID: 30577971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive gait and postural adjustments following the first exposures to (un)expected stepdown.
    AminiAghdam S; Vielemeyer J; Abel R; Müller R
    J Biomech; 2019 Sep; 94():130-137. PubMed ID: 31399205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Static and local dynamic stability of subjects with knee joint osteoarthritis.
    Karimi MT; Sharifmoradi K
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1100-1105. PubMed ID: 35778810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of arm motion on postural stability when recovering from a slip perturbation.
    Gholizadeh H; Hill A; Nantel J
    J Biomech; 2019 Oct; 95():109269. PubMed ID: 31443945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: a result of altered walking speed?
    Zeni JA; Higginson JS
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):372-8. PubMed ID: 19285768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lower extremity joint-level responses to pelvis perturbation during human walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    Sci Rep; 2018 Oct; 8(1):14621. PubMed ID: 30279499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel methodology for assessing total recovery time in response to unexpected perturbations while walking.
    Rosenblum U; Kribus-Shmiel L; Zeilig G; Bahat Y; Kimel-Naor S; Melzer I; Plotnik M
    PLoS One; 2020; 15(6):e0233510. PubMed ID: 32492029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane.
    Matjačić Z; Zadravec M; Olenšek A
    Appl Bionics Biomech; 2019; 2019():1046459. PubMed ID: 31281413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of age on the ability to recover from a single unexpected underfoot perturbation during gait: kinematic responses.
    Kim H; Nnodim JO; Richardson JK; Ashton-Miller JA
    Gait Posture; 2013 Sep; 38(4):853-7. PubMed ID: 23680425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait stability in response to platform, belt, and sensory perturbations in young and older adults.
    Roeles S; Rowe PJ; Bruijn SM; Childs CR; Tarfali GD; Steenbrink F; Pijnappels M
    Med Biol Eng Comput; 2018 Dec; 56(12):2325-2335. PubMed ID: 29946955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in Mediolateral Postural Control Mechanisms During Gait After Total Knee Arthroplasty.
    Wang J; Severin AC; Mears SC; Stambough JB; Barnes CL; Mannen EM
    J Arthroplasty; 2021 Sep; 36(9):3326-3332. PubMed ID: 34030875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.