These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38479729)

  • 1. Combined Strategies Enable Highly Selective Light Olefins and
    Wu Y; Han J; Zhang W; Yu Z; Wang K; Fang X; Wei Y; Liu Z
    J Am Chem Soc; 2024 Mar; 146(12):8086-8097. PubMed ID: 38479729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanol promoted naphtha catalytic pyrolysis to light olefins on Zn-modified high-silicon HZSM-5 zeolite catalysts.
    Cheng QT; Shen BX; Sun H; Zhao JG; Liu JC
    RSC Adv; 2019 Jul; 9(36):20818-20828. PubMed ID: 35515572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst.
    Wang J; Zhong Z; Ding K; Xue Z
    Bioresour Technol; 2016 Jul; 212():6-10. PubMed ID: 27065226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective methylation of toluene using CO
    Zuo J; Chen W; Liu J; Duan X; Ye L; Yuan Y
    Sci Adv; 2020 Aug; 6(34):. PubMed ID: 32937362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the product selectivity in the conversion of methanol to the feedstock for phenol production.
    Zambare AS; Ou J; Hill Wong DS; Yao CW; Jang SS
    RSC Adv; 2019 Jul; 9(41):23864-23875. PubMed ID: 35530611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity.
    Zhou J; Gao M; Zhang J; Liu W; Zhang T; Li H; Xu Z; Ye M; Liu Z
    Nat Commun; 2021 Jan; 12(1):17. PubMed ID: 33397957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of light olefins and monocyclic aromatic hydrocarbons from the pyrolysis of waste plastic straws over high-silica zeolite-based catalysts.
    Valizadeh B; Valizadeh S; Kim H; Choi YJ; Seo MW; Yoo KS; Lin KA; Hussain M; Park YK
    Environ Res; 2024 Mar; 245():118076. PubMed ID: 38160977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the reaction strategy of directional alkylation fulfilled by controlling the adsorption pose of benzene and methanol in space with Ru/HZSM-5.
    Wang D; Li Y; Zhao Y; Ji D; Dong P; Li G
    BMC Chem; 2021 May; 15(1):35. PubMed ID: 34020692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Catalytic Mechanism of the Methanol-to-Hydrocarbons Reaction over Zeolites.
    Wu X; Wei Y; Liu Z
    Acc Chem Res; 2023 Jul; 56(14):2001-2014. PubMed ID: 37402692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presenting a Four-Lump Dynamic Kinetic Model for Methanol to Light Olefins Process Over the Hierarchical SAPO-34 Catalyst Using Power Law Models.
    Azarhoosh MJ; Azarhoosh AR
    Comb Chem High Throughput Screen; 2021; 24(4):570-580. PubMed ID: 32933454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of methanol to hydrocarbon catalysis.
    Haw JF; Song W; Marcus DM; Nicholas JB
    Acc Chem Res; 2003 May; 36(5):317-26. PubMed ID: 12755641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction.
    Lin S; Zhi Y; Chen W; Li H; Zhang W; Lou C; Wu X; Zeng S; Xu S; Xiao J; Zheng A; Wei Y; Liu Z
    J Am Chem Soc; 2021 Aug; 143(31):12038-12052. PubMed ID: 34319735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2020 Feb; 703():134605. PubMed ID: 31731164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention.
    Hwang A; Bhan A
    Acc Chem Res; 2019 Sep; 52(9):2647-2656. PubMed ID: 31403774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.
    Gong F; Yang Z; Hong C; Huang W; Ning S; Zhang Z; Xu Y; Li Q
    Bioresour Technol; 2011 Oct; 102(19):9247-54. PubMed ID: 21807503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity-controlled methanol conversion over zeolite catalysts.
    Zhang W; Lin S; Wei Y; Tian P; Ye M; Liu Z
    Natl Sci Rev; 2023 Sep; 10(9):nwad120. PubMed ID: 37565191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca Cations Impact the Local Environment inside HZSM-5 Pores during the Methanol-to-Hydrocarbons Reaction.
    Liutkova A; Zhang H; Simons JFM; Mezari B; Mirolo M; Garcia GA; Hensen EJM; Kosinov N
    ACS Catal; 2023 Mar; 13(6):3471-3484. PubMed ID: 36970466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene.
    Wang C; Zhang L; Huang X; Zhu Y; Li GK; Gu Q; Chen J; Ma L; Li X; He Q; Xu J; Sun Q; Song C; Peng M; Sun J; Ma D
    Nat Commun; 2019 Sep; 10(1):4348. PubMed ID: 31554786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.