These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38479985)

  • 1. Macromolecular crowding has opposite effects on two critical sub-steps of transcription initiation.
    Mukherjee P; Mazumder A
    FEBS Lett; 2024 May; 598(9):1022-1033. PubMed ID: 38479985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase.
    Chung S; Lerner E; Jin Y; Kim S; Alhadid Y; Grimaud LW; Zhang IX; Knobler CM; Gelbart WM; Weiss S
    Nucleic Acids Res; 2019 Feb; 47(3):1440-1450. PubMed ID: 30590739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature effects on RNA polymerase initiation kinetics reveal which open complex initiates and that bubble collapse is stepwise.
    Plaskon DM; Henderson KL; Felth LC; Molzahn CM; Evensen C; Dyke S; Shkel IA; Record MT
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34290140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse.
    Ko J; Heyduk T
    Biochem J; 2014 Oct; 463(1):135-44. PubMed ID: 24995916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase.
    Jensen D; Manzano AR; Rammohan J; Stallings CL; Galburt EA
    Nucleic Acids Res; 2019 Jul; 47(13):6685-6698. PubMed ID: 31127308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription initiation at a consensus bacterial promoter proceeds via a 'bind-unwind-load-and-lock' mechanism.
    Mazumder A; Ebright RH; Kapanidis AN
    Elife; 2021 Oct; 10():. PubMed ID: 34633286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis.
    Plaskon D; Evensen C; Henderson K; Palatnik B; Ishikuri T; Wang HC; Doughty S; Thomas Record M
    J Mol Biol; 2022 Jul; 434(13):167621. PubMed ID: 35533764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Polymerase: Step-by-Step Kinetics and Mechanism of Transcription Initiation.
    Henderson KL; Evensen CE; Molzahn CM; Felth LC; Dyke S; Liao G; Shkel IA; Record MT
    Biochemistry; 2019 May; 58(18):2339-2352. PubMed ID: 30950601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of σ factor competition are promoter initiation kinetics dependent.
    Kandavalli VK; Tran H; Ribeiro AS
    Biochim Biophys Acta; 2016 Oct; 1859(10):1281-8. PubMed ID: 27452766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mean and noise of the in vivo kinetics of transcription under the control of the lac/ara-1 promoter.
    Kandhavelu M; Lloyd-Price J; Gupta A; Muthukrishnan AB; Yli-Harja O; Ribeiro AS
    FEBS Lett; 2012 Nov; 586(21):3870-5. PubMed ID: 23017207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Single-Molecule Studies of RNA Polymerase-Promoter Open Complex Formation Reveal Substantial Heterogeneity Along the Promoter-Opening Pathway.
    Malinen AM; Bakermans J; Aalto-Setälä E; Blessing M; Bauer DLV; Parilova O; Belogurov GA; Dulin D; Kapanidis AN
    J Mol Biol; 2022 Jan; 434(2):167383. PubMed ID: 34863780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress.
    Liu B; Hasrat Z; Poolman B; Boersma AJ
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833357
    [No Abstract]   [Full Text] [Related]  

  • 14. Promoter recognition by Escherichia coli RNA polymerase: effects of the UP element on open complex formation and promoter clearance.
    Strainic MG; Sullivan JJ; Velevis A; deHaseth PL
    Biochemistry; 1998 Dec; 37(51):18074-80. PubMed ID: 9922176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
    Mekler V; Minakhin L; Borukhov S; Mustaev A; Severinov K
    J Mol Biol; 2014 Dec; 426(24):3973-3984. PubMed ID: 25311862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the stochastic transcription initiation process in live Escherichia coli.
    Lloyd-Price J; Startceva S; Kandavalli V; Chandraseelan JG; Goncalves N; Oliveira SM; Häkkinen A; Ribeiro AS
    DNA Res; 2016 Jun; 23(3):203-14. PubMed ID: 27026687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time observation of polymerase-promoter contact remodeling during transcription initiation.
    Meng CA; Fazal FM; Block SM
    Nat Commun; 2017 Oct; 8(1):1178. PubMed ID: 29079833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an anti-beta monoclonal antibody on the interaction of the Escherichia coli RNA polymerase with the lac and TAC promoters.
    Rockwell P; Krakow JS
    Biochemistry; 1988 May; 27(9):3512-20. PubMed ID: 3291950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large cosolutes, small cosolutes, and dihydrofolate reductase activity.
    Acosta LC; Perez Goncalves GM; Pielak GJ; Gorensek-Benitez AH
    Protein Sci; 2017 Dec; 26(12):2417-2425. PubMed ID: 28971539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and mechanistic analysis of the RNA polymerase II transcrption reaction at the human interleukin-2 promoter.
    Ferguson HA; Kugel JF; Goodrich JA
    J Mol Biol; 2001 Dec; 314(5):993-1006. PubMed ID: 11743717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.