BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38480472)

  • 1. Overloading effect on the osmo-viscoelastic and recovery behavior of the intervertebral disc.
    Feki F; Taktak R; Haddar N; Moulart M; Zaïri F; Zaïri F
    Proc Inst Mech Eng H; 2024 Apr; 238(4):430-437. PubMed ID: 38480472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Osmoviscoelastic Coupling Affects Recovery of Cyclically Compressed Intervertebral Disc.
    Feki F; Taktak R; Kandil K; Derrouiche A; Moulart M; Haddar N; Zaïri F; Zaïri F
    Spine (Phila Pa 1976); 2020 Nov; 45(21):E1376-E1385. PubMed ID: 33031252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
    Johannessen W; Vresilovic EJ; Wright AC; Elliott DM
    Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic Pressure Alters Time-dependent Recovery Behavior of the Intervertebral Disc.
    Bezci SE; O'Connell GD
    Spine (Phila Pa 1976); 2018 Mar; 43(6):E334-E340. PubMed ID: 28767637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression.
    Lu YM; Hutton WC; Gharpuray VM
    J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study.
    Emanuel KS; van der Veen AJ; Rustenburg CME; Smit TH; Kingma I
    J Biomech; 2018 Mar; 70():10-15. PubMed ID: 29096981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-related mechanics of the intervertebral disc: the validity of an in vitro model.
    van der Veen AJ; Mullender M; Smit TH; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2005 Sep; 30(18):E534-9. PubMed ID: 16166881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmo-inelastic response of the intervertebral disc.
    Derrouiche A; Zaouali A; Zaïri F; Ismail J; Chaabane M; Qu Z; Zaïri F
    Proc Inst Mech Eng H; 2019 Mar; 233(3):332-341. PubMed ID: 30803330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions.
    Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H
    J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.
    Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):167-75. PubMed ID: 10656978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs.
    Showalter BL; Malhotra NR; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2633-40. PubMed ID: 24957922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.
    Schmidt H; Shirazi-Adl A; Schilling C; Dreischarf M
    J Biomech; 2016 Jun; 49(9):1926-1932. PubMed ID: 27209550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Strain Rates on Failure of Mechanical Properties of Lumbar Intervertebral Disc Under Flexion.
    Li K; Zhang SJ; Du CF; Zhao JZ; Liu Q; Zhang CQ; Sun YF
    Orthop Surg; 2020 Dec; 12(6):1980-1989. PubMed ID: 33200562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How pre-strain affects the chemo-torsional response of the intervertebral disc.
    Derrouiche A; Feki F; Zaïri F; Taktak R; Moulart M; Qu Z; Ismail J; Charfi S; Haddar N; Zaïri F
    Clin Biomech (Bristol, Avon); 2020 Jun; 76():105020. PubMed ID: 32416404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration.
    O'Connell GD; Jacobs NT; Sen S; Vresilovic EJ; Elliott DM
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):933-42. PubMed ID: 21783103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain rate-dependent failure mechanics of the intervertebral disc under tension/compression and constitutive analysis.
    Liu Q; Zhang HL; Zhang YL; Wang S; Feng XQ; Li K; Zhang CQ
    Med Eng Phys; 2024 May; 127():104158. PubMed ID: 38692761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.