These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38480566)
1. Efficacy of poller screw in addition to lag screw in the treatment of intertrochanteric fractures with proximal femoral nail: a biomechanical evaluation. Horoz L; Cakmak MF; Cici H Eur J Trauma Emerg Surg; 2024 Aug; 50(4):1591-1598. PubMed ID: 38480566 [TBL] [Abstract][Full Text] [Related]
2. The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures. Ceynowa M; Zerdzicki K; Klosowski P; Pankowski R; Rocławski M; Mazurek T Clin Biomech (Bristol); 2020 Jan; 71():201-207. PubMed ID: 31775090 [TBL] [Abstract][Full Text] [Related]
3. Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Kane P; Vopat B; Heard W; Thakur N; Paller D; Koruprolu S; Born C Clin Orthop Relat Res; 2014 Aug; 472(8):2492-8. PubMed ID: 24760583 [TBL] [Abstract][Full Text] [Related]
4. Cerclage cable augmentation does not increase stability of the fixation of intertrochanteric fractures. A biomechanical study. Ceynowa M; Zerdzicki K; Klosowski P; Pankowski R; Rocławski M; Mazurek T Orthop Traumatol Surg Res; 2021 Oct; 107(6):103003. PubMed ID: 34217866 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical study on the stability and strain conduction of intertrochanteric fracture fixed with proximal femoral nail antirotation versus triangular supporting intramedullary nail. Wang H; Yang W; Ding K; Zhu Y; Zhang Y; Ren C; Zhao K; Zhang Q; Chen W; Zhang Y Int Orthop; 2022 Feb; 46(2):341-350. PubMed ID: 34704144 [TBL] [Abstract][Full Text] [Related]
6. Impact of tip-apex distance and femoral head lag screw position on treatment outcomes of unstable intertrochanteric fractures using cephalomedullary nails. Lee CH; Su KC; Chen KH; Pan CC; Wu YC J Int Med Res; 2018 Jun; 46(6):2128-2140. PubMed ID: 29848122 [TBL] [Abstract][Full Text] [Related]
7. The effect of two different trochanteric nail lag-screw designs on fixation stability of four-part intertrochanteric fractures: a clinical and biomechanical study. Takemoto RC; Lekic N; Schwarzkopf R; Kummer FJ; Egol KA J Orthop Sci; 2014 Jan; 19(1):112-9. PubMed ID: 24248549 [TBL] [Abstract][Full Text] [Related]
8. Distal locking of short cephalomedullary nails decreases varus collapse in unstable intertrochanteric fractures - a biomechanical analysis. Tisherman RT; Hankins ML; Moloney GB; Tarkin IS Injury; 2021 Mar; 52(3):414-418. PubMed ID: 33593524 [TBL] [Abstract][Full Text] [Related]
9. Risk factors for cut-out of double lag screw fixation in proximal femoral fractures. Buyukdogan K; Caglar O; Isik S; Tokgozoglu M; Atilla B Injury; 2017 Feb; 48(2):414-418. PubMed ID: 27889112 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Femoral Head Rotation and Varus Collapse Between a Single Lag Screw and Integrated Dual Screw Intertrochanteric Hip Fracture Fixation Device Using a Cadaveric Hemi-Pelvis Biomechanical Model. Santoni BG; Nayak AN; Cooper SA; Smithson IR; Cox JL; Marberry ST; Sanders RW J Orthop Trauma; 2016 Apr; 30(4):164-9. PubMed ID: 27003028 [TBL] [Abstract][Full Text] [Related]
11. A biomechanical comparison of static versus dynamic lag screw modes for cephalomedullary nails used to fix unstable peritrochanteric fractures. Kuzyk PR; Shah S; Zdero R; Olsen M; Waddell JP; Schemitsch EH J Trauma Acute Care Surg; 2012 Feb; 72(2):E65-70. PubMed ID: 22439235 [TBL] [Abstract][Full Text] [Related]
12. Embedding the lateral end of the lag screw within the lateral wall in the repair of reverse obliquity intertrochanteric femur fracture. Hiragami K; Ishii J J Int Med Res; 2018 Mar; 46(3):1103-1108. PubMed ID: 29082791 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures. Hoffmann S; Paetzold R; Stephan D; Püschel K; Buehren V; Augat P J Orthop Trauma; 2013 Sep; 27(9):483-90. PubMed ID: 23860133 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of recently released cephalomedullary nails for trochanteric femoral fracture fixation in a human cadaveric model. Pastor T; Zderic I; Gehweiler D; Gardner MJ; Stoffel K; Richards G; Knobe M; Gueorguiev B Arch Orthop Trauma Surg; 2022 Dec; 142(12):3787-3796. PubMed ID: 34748055 [TBL] [Abstract][Full Text] [Related]
16. Proximal Femoral Nail Unlocked versus Locked (ProFNUL): a protocol for a multicentre, parallel-armed randomised controlled trial for the effect of femoral nail mode of lag screw locking and screw configuration in the treatment of intertrochanteric femur fractures. Sivakumar A; Thewlis D; Ladurner A; Edwards S; Rickman M BMJ Open; 2020 Feb; 10(2):e032640. PubMed ID: 32047013 [TBL] [Abstract][Full Text] [Related]
17. The effect of locked distal screws in retrograde nailing of osteoporotic distal femur fractures: a laboratory study using cadaver femurs. Tejwani NC; Park S; Iesaka K; Kummer F J Orthop Trauma; 2005 Jul; 19(6):380-3. PubMed ID: 16003196 [TBL] [Abstract][Full Text] [Related]
18. [Biomechanical study on the treatment of intertrochanteric fracture of A3.3 type with medial sustainable nail and proximal femoral anti-rotation nail]. Nie SB; Li JT; Zhao YP; Zhao Z; Zhu BZ; Yan YC; Zhang LC; Tang PF Zhongguo Gu Shang; 2020 Dec; 33(12):1161-5. PubMed ID: 33369325 [TBL] [Abstract][Full Text] [Related]
19. Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation. Curtis MJ; Jinnah RH; Wilson V; Cunningham BW Injury; 1994 Mar; 25(2):99-104. PubMed ID: 8138307 [TBL] [Abstract][Full Text] [Related]
20. Intertrochanteric fracture: Association between the coronal position of the lag screw and stress distribution. Liang C; Peng R; Jiang N; Xie G; Wang L; Yu B Asian J Surg; 2018 May; 41(3):241-249. PubMed ID: 28366494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]