These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38480694)

  • 1. Structure-based prediction and characterization of photo-crosslinking in native protein-RNA complexes.
    Feng H; Lu XJ; Maji S; Liu L; Ustianenko D; Rudnick ND; Zhang C
    Nat Commun; 2024 Mar; 15(1):2279. PubMed ID: 38480694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes.
    Knörlein A; Sarnowski CP; de Vries T; Stoltz M; Götze M; Aebersold R; Allain FH; Leitner A; Hall J
    Nat Commun; 2022 May; 13(1):2719. PubMed ID: 35581222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The novel isotopically coded short-range photo-reactive crosslinker 2,4,6-triazido-1,3,5-triazine (TATA) for studying protein structures.
    Brodie NI; Petrotchenko EV; Borchers CH
    J Proteomics; 2016 Oct; 149():69-76. PubMed ID: 26931439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins.
    Hafner M; Landthaler M; Burger L; Khorshid M; Hausser J; Berninger P; Rothballer A; Ascano M; Jungkamp AC; Munschauer M; Ulrich A; Wardle GS; Dewell S; Zavolan M; Tuschl T
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotopically-coded short-range hetero-bifunctional photo-reactive crosslinkers for studying protein structure.
    Brodie NI; Makepeace KA; Petrotchenko EV; Borchers CH
    J Proteomics; 2015 Apr; 118():12-20. PubMed ID: 25192908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically encoded crosslinkers to address protein-protein interactions.
    Aydin Y; Coin I
    Protein Sci; 2023 May; 32(5):e4637. PubMed ID: 37027152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-initiated crosslinking extends mapping of the protein-protein interface to membrane-embedded portions of cytochromes P450 2B4 and b₅.
    Ječmen T; Ptáčková R; Černá V; Dračínská H; Hodek P; Stiborová M; Hudeček J; Šulc M
    Methods; 2015 Nov; 89():128-37. PubMed ID: 26235815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Genetically Encoded Diazirine Analogue for RNA-Protein Photo-crosslinking.
    Dziuba D; Hoffmann JE; Hentze MW; Schultz C
    Chembiochem; 2020 Jan; 21(1-2):88-93. PubMed ID: 31658407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data.
    Zhang C; Darnell RB
    Nat Biotechnol; 2011 Jun; 29(7):607-14. PubMed ID: 21633356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA crosslinking methods.
    Harris ME; Christian EL
    Methods Enzymol; 2009; 468():127-46. PubMed ID: 20946768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-protein crosslink mapping using TEV protease.
    Turner IA; Norman CM; Churcher MJ; Newman AJ
    Methods Mol Biol; 2008; 488():201-12. PubMed ID: 18982293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs.
    Kimoto M; Endo M; Mitsui T; Okuni T; Hirao I; Yokoyama S
    Chem Biol; 2004 Jan; 11(1):47-55. PubMed ID: 15112994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-crosslinking: An Emerging Chemical Tool for Investigating Molecular Networks in Live Cells.
    Mishra PK; Yoo CM; Hong E; Rhee HW
    Chembiochem; 2020 Apr; 21(7):924-932. PubMed ID: 31794116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residue selective crosslinking of proteins through photoactivatable or proximity-enabled reactivity.
    Liu J; Yang B; Wang L
    Curr Opin Chem Biol; 2023 Jun; 74():102285. PubMed ID: 36913752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of photo-crosslinking reagents for protein kinase-substrate interactions.
    Parang K; Kohn JA; Saldanha SA; Cole PA
    FEBS Lett; 2002 Jun; 520(1-3):156-60. PubMed ID: 12044889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based non-canonical amino acid design to covalently crosslink an antibody-antigen complex.
    Xu J; Tack D; Hughes RA; Ellington AD; Gray JJ
    J Struct Biol; 2014 Feb; 185(2):215-22. PubMed ID: 23680795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of Protein Interfaces in Live Cells Using Genetically Encoded Crosslinkers.
    Seidel L; Coin I
    Methods Mol Biol; 2018; 1728():221-235. PubMed ID: 29405001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Workflow for Identifying Site-Specific Crosslinks Originating from a Genetically Incorporated, Photoreactive Amino Acid.
    Ulmer LD; Canzani D; Woods CN; Stone NL; Janowska MK; Klevit RE; Bush MF
    J Proteome Res; 2024 Aug; 23(8):3560-3570. PubMed ID: 38968604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells.
    Coin I
    Curr Opin Chem Biol; 2018 Oct; 46():156-163. PubMed ID: 30077876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures.
    Gao H; Zhao Q; Gong Z; Zhong B; Chen J; Sui Z; Li X; Liang Z; Zhang Y; Zhang L
    Anal Chem; 2022 Sep; 94(36):12398-12406. PubMed ID: 36031802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.