BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38480809)

  • 1. Exploring the impact of stress on the electronic structure and optical properties of graphdiyne nanoribbons for advanced optoelectronic applications.
    Liu Q; Feng N; Zou Y; Fan C; Wang J
    Sci Rep; 2024 Mar; 14(1):6051. PubMed ID: 38480809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Transport Engineering in Graphdiyne and Graphdiyne Nanoribbons.
    Wan Y; Xiong S; Ouyang B; Niu Z; Ni Y; Zhao Y; Zhang X
    ACS Omega; 2019 Feb; 4(2):4147-4152. PubMed ID: 31459623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications.
    Liu Q; Wang X; Yu J; Wang J
    Phys Chem Chem Phys; 2024 Jan; 26(3):1541-1563. PubMed ID: 38165768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons.
    Zhang N; Yang Z; Zhang Z; Wang J
    Chemphyschem; 2023 Dec; 24(24):e202300348. PubMed ID: 37731169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Structures of Penta-SiC
    Liu Z; Liu X; Wang J
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review.
    Kumar S; Pratap S; Kumar V; Mishra RK; Gwag JS; Chakraborty B
    Luminescence; 2023 Jul; 38(7):909-953. PubMed ID: 35850156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study.
    Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G
    Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Width Dependent Elastic Properties of Graphene Nanoribbons.
    Kalosakas G; Lathiotakis NN; Papagelis K
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Properties of 2D Carbon-Graphdiyne.
    Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y
    Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements.
    Vacacela Gomez C; Pisarra M; Gravina M; Pitarke JM; Sindona A
    Phys Rev Lett; 2016 Sep; 117(11):116801. PubMed ID: 27661709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Graphdiyne Nanoribbons for Molecular Electronics Spectroscopy and Nucleobase Identification: A Theoretical Investigation.
    Rezapour MR; Biel B
    ACS Appl Electron Mater; 2024 Feb; 6(2):1244-1251. PubMed ID: 38435805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The band structure engineering of fluorine-passivated graphdiyne nanoribbons
    Xu J; Wan Q; Wang Z; Lin S
    Phys Chem Chem Phys; 2020 Dec; 22(46):26995-27001. PubMed ID: 33210673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundament and Application of Graphdiyne in Electrochemical Energy.
    Du Y; Zhou W; Gao J; Pan X; Li Y
    Acc Chem Res; 2020 Feb; 53(2):459-469. PubMed ID: 32022537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.