These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38480895)

  • 1. Self-enhanced mobility enables vortex pattern formation in living matter.
    Xu H; Wu Y
    Nature; 2024 Mar; 627(8004):553-558. PubMed ID: 38480895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring order in active turbulence: Geometric rule and pairing order transition in confined bacterial vortices.
    Beppu K; Maeda YT
    Biophys Physicobiol; 2022; 19():1-9. PubMed ID: 35797406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic control of spatiotemporal order in bacterial active matter.
    Liu S; Shankar S; Marchetti MC; Wu Y
    Nature; 2021 Feb; 590(7844):80-84. PubMed ID: 33536650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge current and pairing order transition in chiral bacterial vortices.
    Beppu K; Izri Z; Sato T; Yamanishi Y; Sumino Y; Maeda YT
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid flows created by swimming bacteria drive self-organization in confined suspensions.
    Lushi E; Wioland H; Goldstein RE
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9733-8. PubMed ID: 24958878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry-driven collective ordering of bacterial vortices.
    Beppu K; Izri Z; Gohya J; Eto K; Ichikawa M; Maeda YT
    Soft Matter; 2017 Jul; 13(29):5038-5043. PubMed ID: 28702666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent vortices in populations of colloidal rollers.
    Bricard A; Caussin JB; Das D; Savoie C; Chikkadi V; Shitara K; Chepizhko O; Peruani F; Saintillan D; Bartolo D
    Nat Commun; 2015 Jun; 6():7470. PubMed ID: 26088835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Vortices with Dynamic Rotation Emerged from Monolayer Collective Motion of Gliding
    Nakane D; Odaka S; Suzuki K; Nishizaka T
    J Bacteriol; 2021 Jun; 203(14):e0007321. PubMed ID: 33927052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.
    Chen C; Liu S; Shi XQ; Chaté H; Wu Y
    Nature; 2017 Feb; 542(7640):210-214. PubMed ID: 28114301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of active matter by flow-vortex lattices and defect ordering.
    Doostmohammadi A; Adamer MF; Thampi SP; Yeomans JM
    Nat Commun; 2016 Feb; 7():10557. PubMed ID: 26837846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence and dynamics of unconfined self-organised vortices in active magnetic roller liquids.
    Han K; Glatz A; Snezhko A
    Soft Matter; 2021 Dec; 17(46):10536-10544. PubMed ID: 34761766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical control of interface patterning underlies active matter invasion.
    Xu H; Nejad MR; Yeomans JM; Wu Y
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2219708120. PubMed ID: 37459530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial modulation of individual behaviors enables an ordered structure of diverse phenotypes during bacterial group migration.
    Bai Y; He C; Chu P; Long J; Li X; Fu X
    Elife; 2021 Nov; 10():. PubMed ID: 34726151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern Formation and Defect Ordering in Active Chiral Nematics.
    Li ZY; Zhang DQ; Lin SZ; Li B
    Phys Rev Lett; 2020 Aug; 125(9):098002. PubMed ID: 32915620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of macroscopic directed motion in populations of motile colloids.
    Bricard A; Caussin JB; Desreumaux N; Dauchot O; Bartolo D
    Nature; 2013 Nov; 503(7474):95-8. PubMed ID: 24201282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex arrays and mesoscale turbulence of self-propelled particles.
    Grossmann R; Romanczuk P; Bär M; Schimansky-Geier L
    Phys Rev Lett; 2014 Dec; 113(25):258104. PubMed ID: 25554911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Mesoscale Flows and Chaotic Advection in Dense Active Matter.
    Keta YE; Klamser JU; Jack RL; Berthier L
    Phys Rev Lett; 2024 May; 132(21):218301. PubMed ID: 38856251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale vortex lattice emerging from collectively moving microtubules.
    Sumino Y; Nagai KH; Shitaka Y; Tanaka D; Yoshikawa K; Chaté H; Oiwa K
    Nature; 2012 Mar; 483(7390):448-52. PubMed ID: 22437613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic length-scale selection in microswimmer suspensions.
    Heidenreich S; Dunkel J; Klapp SH; Bär M
    Phys Rev E; 2016 Aug; 94(2-1):020601. PubMed ID: 27627229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.