These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38481102)

  • 1. Calculation of protein-ligand binding entropies using a rule-based molecular fingerprint.
    Risheh A; Rebel A; Nerenberg PS; Forouzesh N
    Biophys J; 2024 Sep; 123(17):2839-2848. PubMed ID: 38481102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Physics-Guided Neural Network for Predicting Protein-Ligand Binding Free Energy: From Host-Guest Systems to the PDBbind Database.
    Cain S; Risheh A; Forouzesh N
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Potential Functions to Host-Guest Binding Data.
    Setiadi J; Boothroyd S; Slochower DR; Dotson DL; Thompson MW; Wagner JR; Wang LP; Gilson MK
    J Chem Theory Comput; 2024 Jan; 20(1):239-252. PubMed ID: 38147689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional Δ
    Metcalf DP; Glick ZL; Bortolato A; Jiang A; Cheney DL; Sherrill CD
    J Chem Inf Model; 2024 Mar; 64(6):1907-1918. PubMed ID: 38470995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
    Wang J; Hou T
    J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein ligand binding site prediction using graph transformer neural network.
    Ishitani R; Takemoto M; Tomii K
    PLoS One; 2024; 19(8):e0308425. PubMed ID: 39106255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Methods as a Cost-Effective Alternative to Physics-Based Binding Free Energy Calculations.
    Bansal N; Wang Y; Sciabola S
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Accuracy of Physics-Based Hydration-Free Energy Predictions by Machine Learning the Remaining Error Relative to the Experiment.
    Bass L; Elder LH; Folescu DE; Forouzesh N; Tolokh IS; Karpatne A; Onufriev AV
    J Chem Theory Comput; 2024 Jan; 20(1):396-410. PubMed ID: 38149593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of solute and solvent entropies from molecular dynamics simulations.
    Carlsson J; Aqvist J
    Phys Chem Chem Phys; 2006 Dec; 8(46):5385-95. PubMed ID: 17119645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward accurate microscopic calculation of solvation entropies: extending the restraint release approach to studies of solvation effects.
    Singh N; Warshel A
    J Phys Chem B; 2009 May; 113(20):7372-82. PubMed ID: 19402609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy.
    Wu Y; Brooks CL
    J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches.
    Sun H; Duan L; Chen F; Liu H; Wang Z; Pan P; Zhu F; Zhang JZH; Hou T
    Phys Chem Chem Phys; 2018 May; 20(21):14450-14460. PubMed ID: 29785435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blind prediction of host-guest binding affinities: a new SAMPL3 challenge.
    Muddana HS; Varnado CD; Bielawski CW; Urbach AR; Isaacs L; Geballe MT; Gilson MK
    J Comput Aided Mol Des; 2012 May; 26(5):475-87. PubMed ID: 22366955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.