These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38482028)

  • 41. Photocatalytic degradation of persistent organic pollutants by Co-Cl bond reinforced CoAl-LDH/Bi
    Guo J; Sun H; Yuan X; Jiang L; Wu Z; Yu H; Tang N; Yu M; Yan M; Liang J
    Water Res; 2022 Jul; 219():118558. PubMed ID: 35569278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multifunctional graphene oxide-TiO₂-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation.
    Liu L; Bai H; Liu J; Sun DD
    J Hazard Mater; 2013 Oct; 261():214-23. PubMed ID: 23933907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional graphene-based nanocomposites for simultaneous enhanced photocatalytic degradation and photothermal antibacterial activity by visible light.
    Lv YK; Mei L; Zhang LX; Yang DH; Yin ZY
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):49880-49888. PubMed ID: 33948833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduced graphene oxide/Bi
    Xu M; Wang Y; Ha E; Zhang H; Li C
    Chemosphere; 2021 Feb; 265():129013. PubMed ID: 33310314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment.
    Wei XX; Cui H; Guo S; Zhao L; Li W
    J Hazard Mater; 2013 Dec; 263 Pt 2():650-8. PubMed ID: 24220195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater.
    Fito J; Kefeni KK; Nkambule TTI
    Sci Total Environ; 2022 Jul; 829():154648. PubMed ID: 35306069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of silver oxide-loaded reduced graphene oxide nanohybrids for enhanced photocatalytic activity under visible light in aqueous solutions.
    Manikandan V; Palanisamy G; Lee J; F Albeshr M; Fahad Alrefaei A; Pragasan LA; Zhang F; Liu X
    Chemosphere; 2023 Sep; 336():139227. PubMed ID: 37327825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly-NIPAM/Fe
    Abdullah TA; Juzsakova T; Le PC; Kułacz K; Salman AD; Rasheed RT; Mallah MA; Varga B; Mansoor H; Mako E; Zsirka B; Nadda AK; Nguyen XC; Nguyen DD
    Environ Pollut; 2022 Aug; 306():119372. PubMed ID: 35533957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO
    Lin L; Wang H; Jiang W; Mkaouar AR; Xu P
    J Hazard Mater; 2017 Jul; 333():162-168. PubMed ID: 28351797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial cellulose based TiO
    Qian X; Xu Y; Xu Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):127873. PubMed ID: 37926309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process.
    Natarajan S; Bajaj HC; Tayade RJ
    J Environ Sci (China); 2018 Mar; 65():201-222. PubMed ID: 29548392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visible light assisted surface plasmon resonance triggered Ag/ZnO nanocomposites: synthesis and performance towards degradation of indigo carmine dye.
    Kumar R; Janbandhu SY; Sukhadeve GK; Gedam RS
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):98619-98631. PubMed ID: 36053425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Removal of Methyl Violet Dye from Aqueous Solution by a Novel Co
    Ghasemzadeh MA; Elyasi Z; Monfared MRZ
    Comb Chem High Throughput Screen; 2022; 25(5):883-894. PubMed ID: 33645475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AgI/TiO2 nanocomposites: ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity.
    Xue B; Sun T; Wu JK; Mao F; Yang W
    Ultrason Sonochem; 2015 Jan; 22():1-6. PubMed ID: 24853106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Synergistic Effect of Adsorption-Photocatalysis for Removal of Organic Pollutants on Mesoporous Cu
    Feng J; Ran X; Wang L; Xiao B; Lei L; Zhu J; Liu Z; Xi X; Feng G; Dai Z; Li R
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced degradation of ciprofloxacin in water using ternary photocatalysts TiO
    Escareño-Torres GA; Pinedo-Escobar JA; De Haro-Del Río DA; Becerra-Castañeda P; Araiza DG; Inchaurregui-Méndez H; Carrillo-Martínez CJ; González-Rodríguez LM
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40174-40189. PubMed ID: 37597150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous adsorption-photocatalytic treatment with TiO
    Zhou F; Yang M; Lu R; Yan C
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39557-39566. PubMed ID: 35103948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photodegradation of ciprofloxacin antibiotic in water by using ZnO-doped g-C
    Van Thuan D; Nguyen TBH; Pham TH; Kim J; Hien Chu TT; Nguyen MV; Nguyen KD; Al-Onazi WA; Elshikh MS
    Chemosphere; 2022 Dec; 308(Pt 2):136408. PubMed ID: 36103922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light.
    Zong Y; Ma S; Gao J; Xu M; Xue J; Wang M
    ACS Omega; 2021 Jul; 6(27):17228-17238. PubMed ID: 34278109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of novel magnetic CuS/Fe
    Nasseh N; Arghavan FS; Daglioglu N; Asadi A
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):19222-19233. PubMed ID: 33394401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.