BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38482073)

  • 1. Ultrafast electron diffuse scattering as a tool for studying phonon transport: Phonon hydrodynamics and second sound oscillations.
    Kremeyer L; Britt TL; Siwick BJ; Huberman SC
    Struct Dyn; 2024 Mar; 11(2):024101. PubMed ID: 38482073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite.
    Ding Z; Zhou J; Song B; Chiloyan V; Li M; Liu TH; Chen G
    Nano Lett; 2018 Jan; 18(1):638-649. PubMed ID: 29236507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon Hydrodynamic Transport: Observation of Thermal Wave-Like Flow and Second Sound Propagation in Graphene at 100 K.
    Rezgui H
    ACS Omega; 2023 Jul; 8(26):23964-23974. PubMed ID: 37426207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of second sound in graphite over 200 K.
    Ding Z; Chen K; Song B; Shin J; Maznev AA; Nelson KA; Chen G
    Nat Commun; 2022 Jan; 13(1):285. PubMed ID: 35022394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing momentum-dependent electron-phonon and phonon-phonon coupling in complex materials with ultrafast electron diffuse scattering.
    Dürr HA; Ernstorfer R; Siwick BJ
    MRS Bull; 2021; 46(8):731-737. PubMed ID: 34720390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice-Boltzmann modeling of phonon hydrodynamics.
    Jiaung WS; Ho JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066710. PubMed ID: 18643400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Panoramic Mapping of Phonon Transport from Ultrafast Electron Diffraction and Scientific Machine Learning.
    Chen Z; Shen X; Andrejevic N; Liu T; Luo D; Nguyen T; Drucker NC; Kozina ME; Song Q; Hua C; Chen G; Wang X; Kong J; Li M
    Adv Mater; 2023 Jan; 35(2):e2206997. PubMed ID: 36440651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon stability and phonon transport of graphene-like borophene.
    Yin Y; Li D; Hu Y; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Jul; 31(31):315709. PubMed ID: 32203947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon hydrodynamics in crystalline materials.
    Ghosh K; Kusiak A; Battaglia JL
    J Phys Condens Matter; 2022 Jun; 34(32):. PubMed ID: 35588717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon transport in graphene based materials.
    Liu C; Lu P; Chen W; Zhao Y; Chen Y
    Phys Chem Chem Phys; 2021 Dec; 23(46):26030-26060. PubMed ID: 34515261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing the Anisotropic Nonthermal Phonon Populations in Black Phosphorus.
    Seiler H; Zahn D; Zacharias M; Hildebrandt PN; Vasileiadis T; Windsor YW; Qi Y; Carbogno C; Draxl C; Ernstorfer R; Caruso F
    Nano Lett; 2021 Jul; 21(14):6171-6178. PubMed ID: 34279103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlocal phonon thermal transport in graphene in hydrodynamic regime.
    Luo XP; Guo YY; Yi HL
    J Phys Condens Matter; 2023 Dec; 36(11):. PubMed ID: 38061073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide.
    Lee S; Kang SH; Kwon YK
    Sci Rep; 2019 Mar; 9(1):5149. PubMed ID: 30914726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat vortex in hydrodynamic phonon transport of two-dimensional materials.
    Shang MY; Zhang C; Guo Z; Lü JT
    Sci Rep; 2020 May; 10(1):8272. PubMed ID: 32427969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron-phonon coupling from the theoretical and experimental viewpoints.
    Sjakste J; Tanimura K; Barbarino G; Perfetti L; Vast N
    J Phys Condens Matter; 2018 Sep; 30(35):353001. PubMed ID: 30084390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-Ballistic Width Dependence of Thermal Conductivity in Graphite Nanoribbons and Microribbons.
    Huang X; Masubuchi S; Watanabe K; Taniguchi T; Machida T; Nomura M
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures.
    Zeng L; Collins KC; Hu Y; Luckyanova MN; Maznev AA; Huberman S; Chiloyan V; Zhou J; Huang X; Nelson KA; Chen G
    Sci Rep; 2015 Nov; 5():17131. PubMed ID: 26612032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-phonon and electron-phonon scattering effects on thermal properties in two-dimensional 2H-TaS
    Zhang Y; Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T
    Nanoscale; 2022 Sep; 14(36):13053-13058. PubMed ID: 36040796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous thermal transport under high pressure in boron arsenide.
    Li S; Qin Z; Wu H; Li M; Kunz M; Alatas A; Kavner A; Hu Y
    Nature; 2022 Dec; 612(7940):459-464. PubMed ID: 36418403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.