These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38482464)

  • 1. High-throughput and simultaneous inertial separation of tumor cells and clusters from malignant effusions using spiral-contraction-expansion channels.
    Zhu Z; Ren H; Wu D; Ni Z; Xiang N
    Microsyst Nanoeng; 2024; 10():36. PubMed ID: 38482464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics.
    Zhu Z; Li S; Wu D; Ren H; Ni C; Wang C; Xiang N; Ni Z
    Lab Chip; 2022 May; 22(11):2097-2106. PubMed ID: 35441644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded elasto-inertial separation of malignant tumor cells from untreated malignant pleural and peritoneal effusions.
    Ni C; Wu D; Chen Y; Wang S; Xiang N
    Lab Chip; 2024 Feb; 24(4):697-706. PubMed ID: 38273802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost polymer-film spiral inertial microfluidic device for label-free separation of malignant tumor cells.
    Wang C; Chen Y; Gu X; Zhang X; Gao C; Dong L; Zheng S; Feng S; Xiang N
    Electrophoresis; 2022 Feb; 43(3):464-471. PubMed ID: 34611912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation.
    Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z
    Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel.
    Islam MS; Chen X
    Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods.
    Huang D; Xiang N
    Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics.
    Ni C; Zhu Z; Zhou Z; Xiang N
    Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures.
    Cha H; Fallahi H; Dai Y; Yadav S; Hettiarachchi S; McNamee A; An H; Xiang N; Nguyen NT; Zhang J
    Lab Chip; 2022 Jul; 22(15):2789-2800. PubMed ID: 35587546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; MÃ¥rtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays.
    Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R
    J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
    Khan M; Chen X
    Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.