These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38482564)

  • 1. Discovery of Potent Isoindolinone Inhibitors that Target an Active Conformation of PARP1 Using DNA-Encoded Libraries.
    McCarthy KA; Marcotte DJ; Parelkar S; McKinnon CL; Trammell LE; Stangeland EL; Jetson RR
    ChemMedChem; 2024 Jun; 19(11):e202400093. PubMed ID: 38482564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target.
    Li J; Li Y; Lu F; Liu L; Ji Q; Song K; Yin Q; Lerner RA; Yang G; Xu H; Ma P
    Biochem Biophys Res Commun; 2020 Dec; 533(2):241-248. PubMed ID: 32381359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule.
    Zhao Q; Lan T; Su S; Rao Y
    Chem Commun (Camb); 2019 Jan; 55(3):369-372. PubMed ID: 30540295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and evaluation of potential inhibitors for poly(ADP-ribose) polymerase members 1 and 14.
    Kam CM; Tauber AL; Levonis SM; Schweiker SS
    Future Med Chem; 2020 Dec; 12(24):2179-2190. PubMed ID: 33225736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.
    Chen W; Guo N; Qi M; Dai H; Hong M; Guan L; Huan X; Song S; He J; Wang Y; Xi Y; Yang X; Shen Y; Su Y; Sun Y; Gao Y; Chen Y; Ding J; Tang Y; Ren G; Miao Z; Li J
    Eur J Med Chem; 2017 Sep; 138():514-531. PubMed ID: 28692916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High affinity and low PARP-trapping benzimidazole derivatives as a potential warhead for PARP1 degraders.
    Peng X; Li Y; Qu J; Jiang L; Wu K; Liu D; Chen Y; Peng J; Guo Y; Cao X
    Eur J Med Chem; 2024 May; 271():116405. PubMed ID: 38678823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small Molecule Microarray Based Discovery of PARP14 Inhibitors.
    Peng B; Thorsell AG; Karlberg T; Schüler H; Yao SQ
    Angew Chem Int Ed Engl; 2017 Jan; 56(1):248-253. PubMed ID: 27918638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP1: Structural insights and pharmacological targets for inhibition.
    Spiegel JO; Van Houten B; Durrant JD
    DNA Repair (Amst); 2021 Jul; 103():103125. PubMed ID: 33940558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARP trapping is governed by the PARP inhibitor dissociation rate constant.
    Gopal AA; Fernandez B; Delano J; Weissleder R; Dubach JM
    Cell Chem Biol; 2024 Jul; 31(7):1373-1382.e10. PubMed ID: 38262416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update.
    Jain PG; Patel BD
    Eur J Med Chem; 2019 Mar; 165():198-215. PubMed ID: 30684797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging shape screening and molecular dynamics simulations to optimize PARP1-Specific chemo/radio-potentiators for antitumor drug design.
    Khizer H; Maryam A; Ansari A; Ahmad MS; Khalid RR
    Arch Biochem Biophys; 2024 Jun; 756():110010. PubMed ID: 38642632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP1: A Promising Target for the Development of PARP1-based Candidates for Anticancer Intervention.
    Zhu X; Ma X; Hu Y
    Curr Med Chem; 2016; 23(17):1756-74. PubMed ID: 25245372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avoid the trap: Targeting PARP1 beyond human malignancy.
    Kim C; Chen C; Yu Y
    Cell Chem Biol; 2021 Apr; 28(4):456-462. PubMed ID: 33657415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and biological evaluation of novel chrysin derivatives as poly(ADP-ribose) polymerase 1 (PARP1) inhibitors for the treatment of breast cancer.
    Yang Y; Tong J; Xie X; Cao H; Fu Y; Luo Y; Liu S; Chen W; Yang N
    Chin J Nat Med; 2024 May; 22(5):455-465. PubMed ID: 38796218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design of new poly (ADP-ribose) polymerase (PARP-1) inhibitors.
    Chadha N; Jaggi AS; Silakari O
    Mol Divers; 2017 Aug; 21(3):655-660. PubMed ID: 28653128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serine-linked PARP1 auto-modification controls PARP inhibitor response.
    Prokhorova E; Zobel F; Smith R; Zentout S; Gibbs-Seymour I; Schützenhofer K; Peters A; Groslambert J; Zorzini V; Agnew T; Brognard J; Nielsen ML; Ahel D; Huet S; Suskiewicz MJ; Ahel I
    Nat Commun; 2021 Jul; 12(1):4055. PubMed ID: 34210965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of disaccharide nucleoside analogues as potential poly(ADP-ribose) polymerase-1 inhibitors.
    Zheng M; Mex M; Götz KH; Marx A
    Org Biomol Chem; 2018 Nov; 16(46):8904-8907. PubMed ID: 30203829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery.
    Rouleau-Turcotte É; Krastev DB; Pettitt SJ; Lord CJ; Pascal JM
    Mol Cell; 2022 Aug; 82(16):2939-2951.e5. PubMed ID: 35793673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.