BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38482667)

  • 1. Titin-Based Force Modulates Cardiac Thick and Thin Filaments.
    Hessel AL; Kuehn MN; Engels NM; Nissen DL; Freundt JK; Ma W; Irving TC; Linke WA
    Circ Res; 2024 Apr; 134(8):1026-1028. PubMed ID: 38482667
    [No Abstract]   [Full Text] [Related]  

  • 2. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils.
    Kulke M; Fujita-Becker S; Rostkova E; Neagoe C; Labeit D; Manstein DJ; Gautel M; Linke WA
    Circ Res; 2001 Nov; 89(10):874-81. PubMed ID: 11701614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin-titin interaction in cardiac myofibrils: probing a physiological role.
    Linke WA; Ivemeyer M; Labeit S; Hinssen H; Rüegg JC; Gautel M
    Biophys J; 1997 Aug; 73(2):905-19. PubMed ID: 9251807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium.
    Linke WA; Fernandez JM
    J Muscle Res Cell Motil; 2002; 23(5-6):483-97. PubMed ID: 12785099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.
    Myhre JL; Hills JA; Prill K; Wohlgemuth SL; Pilgrim DB
    Dev Biol; 2014 Mar; 387(1):93-108. PubMed ID: 24370452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of myofibrils in cardiac muscle cells.
    Sanger JW; Ayoob JC; Chowrashi P; Zurawski D; Sanger JM
    Adv Exp Med Biol; 2000; 481():89-102; discussion 103-5. PubMed ID: 10987068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titin force is enhanced in actively stretched skeletal muscle.
    Powers K; Schappacher-Tilp G; Jinha A; Leonard T; Nishikawa K; Herzog W
    J Exp Biol; 2014 Oct; 217(Pt 20):3629-36. PubMed ID: 25147246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion.
    González-Morales N; Holenka TK; Schöck F
    PLoS Genet; 2017 Jul; 13(7):e1006880. PubMed ID: 28732005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titin stiffness modifies the force-generating region of muscle sarcomeres.
    Li Y; Lang P; Linke WA
    Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin.
    Powers K; Nishikawa K; Joumaa V; Herzog W
    J Exp Biol; 2016 May; 219(Pt 9):1311-6. PubMed ID: 26944495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of Thick Filaments in Individual Sarcomeres Affects Force Production by Single Myofibrils.
    Mendoza AC; Rassier DE
    Biophys J; 2020 Apr; 118(8):1921-1929. PubMed ID: 32251620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent inhibition of in vitro thin-filament motility by native titin.
    Kellermayer MS; Granzier HL
    FEBS Lett; 1996 Feb; 380(3):281-6. PubMed ID: 8601441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure.
    Linke WA; Rudy DE; Centner T; Gautel M; Witt C; Labeit S; Gregorio CC
    J Cell Biol; 1999 Aug; 146(3):631-44. PubMed ID: 10444071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limits of titin extension in single cardiac myofibrils.
    Linke WA; Bartoo ML; Ivemeyer M; Pollack GH
    J Muscle Res Cell Motil; 1996 Aug; 17(4):425-38. PubMed ID: 8884598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation.
    Loison O; Weitkunat M; Kaya-Çopur A; Nascimento Alves C; Matzat T; Spletter ML; Luschnig S; Brasselet S; Lenne PF; Schnorrer F
    PLoS Biol; 2018 Apr; 16(4):e2004718. PubMed ID: 29702642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics.
    Elhamine F; Radke MH; Pfitzer G; Granzier H; Gotthardt M; Stehle R
    J Cell Sci; 2014 Sep; 127(Pt 17):3666-74. PubMed ID: 24982444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart.
    Kellermayer D; Kiss B; Tordai H; Oláh A; Granzier HL; Merkely B; Kellermayer M; Radovits T
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction.
    Granzier H; Kellermayer M; Helmes M; Trombitás K
    Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin.
    Funatsu T; Higuchi H; Ishiwata S
    J Cell Biol; 1990 Jan; 110(1):53-62. PubMed ID: 2153147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.