These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38482790)

  • 1. Thermometries for Single Nanoparticles Heated with Light.
    Martinez LP; Mina Villarreal MC; Zaza C; Barella M; Acuna GP; Stefani FD; Violi IL; Gargiulo J
    ACS Sens; 2024 Mar; 9(3):1049-1064. PubMed ID: 38482790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry.
    Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM
    Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Nanoparticle Thermometry with a Nanopipette.
    Holub M; Adobes-Vidal M; Frutiger A; Gschwend PM; Pratsinis SE; Momotenko D
    ACS Nano; 2020 Jun; 14(6):7358-7369. PubMed ID: 32426962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy.
    Chen Z; Shan X; Guan Y; Wang S; Zhu JJ; Tao N
    ACS Nano; 2015 Dec; 9(12):11574-81. PubMed ID: 26435320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Applications of Thermoplasmonics.
    Ruhoff VT; Arastoo MR; Moreno-Pescador G; Bendix PM
    Nano Lett; 2024 Jan; 24(3):777-789. PubMed ID: 38183300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination.
    Tiburski C; Nugroho FAA; Langhammer C
    ACS Nano; 2022 Apr; 16(4):6233-6243. PubMed ID: 35343680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications and challenges of thermoplasmonics.
    Baffou G; Cichos F; Quidant R
    Nat Mater; 2020 Sep; 19(9):946-958. PubMed ID: 32807918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Janus-Nanojet as an efficient asymmetric photothermal source.
    González-Colsa J; Franco A; Bresme F; Moreno F; Albella P
    Sci Rep; 2022 Aug; 12(1):14222. PubMed ID: 35987802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Control of Heat Flow at the Nanoscale Using Janus Particles.
    Olarte-Plata JD; Gabriel J; Albella P; Bresme F
    ACS Nano; 2022 Jan; 16(1):694-709. PubMed ID: 34918910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal imaging of nanostructures by quantitative optical phase analysis.
    Baffou G; Bon P; Savatier J; Polleux J; Zhu M; Merlin M; Rigneault H; Monneret S
    ACS Nano; 2012 Mar; 6(3):2452-8. PubMed ID: 22305011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.
    Hong Y; Ding S; Wu W; Hu J; Voevodin AA; Gschwender L; Snyder E; Chow L; Su M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1685-91. PubMed ID: 20527779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids.
    Rafiei Miandashti A; Khosravi Khorashad L; Kordesch ME; Govorov AO; Richardson HH
    ACS Nano; 2020 Apr; 14(4):4188-4195. PubMed ID: 32176469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors.
    Liu GQ; Liu RB; Li Q
    Acc Chem Res; 2023 Jan; 56(2):95-105. PubMed ID: 36594628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation.
    Fromain A; Perez JE; Van de Walle A; Lalatonne Y; Wilhelm C
    Nat Commun; 2023 Aug; 14(1):4637. PubMed ID: 37532698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure.
    Tamura M; Iida T; Setoura K
    Nanoscale; 2022 Sep; 14(35):12589-12594. PubMed ID: 35968839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.