These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38482953)

  • 41. High transparent conductive Ga-doped ZnO-based multilayer thin films with embedded ultrathin TiN layer deposited in oxygen-containing atmosphere.
    Liu Y; Yu H; Zeng Q; Ruan Q
    Opt Lett; 2023 Dec; 48(23):6296-6299. PubMed ID: 38039251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunable angle-selective optical transparency induced by photonic topological transition in Dirac semimetals-based hyperbolic metamaterials.
    Wang Q; Zhang L; Cai X; Cencillo-Abad P; Ou JY
    Opt Express; 2022 Jun; 30(13):23102-23114. PubMed ID: 36224997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembled Co-BaZrO
    Huang J; Li L; Lu P; Qi Z; Sun X; Zhang X; Wang H
    Nanoscale; 2017 Jun; 9(23):7970-7976. PubMed ID: 28574068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range.
    Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA
    Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Waves in hyperbolic and double negative metamaterials including rogues and solitons.
    Boardman AD; Alberucci A; Assanto G; Grimalsky VV; Kibler B; McNiff J; Nefedov IS; Rapoport YG; Valagiannopoulos CA
    Nanotechnology; 2017 Nov; 28(44):444001. PubMed ID: 28306553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Template-Free Growth of Well-Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses.
    Gao J; Wu X; Li Q; Du S; Huang F; Liang L; Zhang H; Zhuge F; Cao H; Song Y
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28218442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-Assembled BaTiO
    Zhang D; Misra S; Jian J; Lu P; Li L; Wissel A; Zhang X; Wang H
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5390-5398. PubMed ID: 33464819
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and optical properties of nanostructured plasmonic Al
    Bakkali H; Blanco E; Domínguez M; Garitaonandia JS
    Nanotechnology; 2017 Aug; 28(33):335704. PubMed ID: 28644818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Realization of mid-infrared graphene hyperbolic metamaterials.
    Chang YC; Liu CH; Liu CH; Zhang S; Marder SR; Narimanov EE; Zhong Z; Norris TB
    Nat Commun; 2016 Feb; 7():10568. PubMed ID: 26843149
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical bistability based on hyperbolic metamaterials.
    Kim M; Kim S; Kim S
    Opt Express; 2018 Apr; 26(9):11620-11632. PubMed ID: 29716080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bipolar Resistive Switching Characteristics of HfO
    Zhang W; Kong JZ; Cao ZY; Li AD; Wang LG; Zhu L; Li X; Cao YQ; Wu D
    Nanoscale Res Lett; 2017 Dec; 12(1):393. PubMed ID: 28599512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials.
    Gric T; Hess O
    Opt Express; 2017 May; 25(10):11466-11476. PubMed ID: 28788712
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings.
    Sreekanth KV; De Luca A; Strangi G
    Sci Rep; 2013 Nov; 3():3291. PubMed ID: 24256947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)(1-x):(ZnO)x thin films on silicon substrates.
    Zhang W; Chen A; Khatkhatay F; Tsai CF; Su Q; Jiao L; Zhang X; Wang H
    ACS Appl Mater Interfaces; 2013 May; 5(10):3995-9. PubMed ID: 23618080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interfacial coherency stress distribution in TiN/AlN bilayer and multilayer films studied by FEM analysis.
    Chawla V; Holec D; Mayrhofer PH
    Comput Mater Sci; 2012 Apr; 55(3):211-216. PubMed ID: 27570370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasma-Enhanced Atomic Layer Deposition of TiAlN: Compositional and Optoelectronic Tunability.
    Jeon N; Lightcap I; Mandia DJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11602-11611. PubMed ID: 30821951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced displacements in reflected beams at hyperbolic metamaterials.
    Xu C; Xu J; Song G; Zhu C; Yang Y; Agarwal GS
    Opt Express; 2016 Sep; 24(19):21767-76. PubMed ID: 27661914
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulation of Structural, Electronic, and Optical Properties of Titanium Nitride Thin Films by Regulated In Situ Oxidation.
    Roy M; Sarkar K; Som J; Pfeifer MA; Craciun V; Schall JD; Aravamudhan S; Wise FW; Kumar D
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4733-4742. PubMed ID: 36625508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electromagnetic energy density in hyperbolic metamaterials.
    Moradi A; Luan PG
    Sci Rep; 2022 Jun; 12(1):10760. PubMed ID: 35750782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.