These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38483289)
1. Improving resolution of panoramic radiographs: super-resolution concept. Çelik ME; Mikaeili M; Çelik B Dentomaxillofac Radiol; 2024 Apr; 53(4):240-247. PubMed ID: 38483289 [TBL] [Abstract][Full Text] [Related]
2. Super-Resolution of Dental Panoramic Radiographs Using Deep Learning: A Pilot Study. Mohammad-Rahimi H; Vinayahalingam S; Mahmoudinia E; Soltani P; Bergé SJ; Krois J; Schwendicke F Diagnostics (Basel); 2023 Mar; 13(5):. PubMed ID: 36900140 [TBL] [Abstract][Full Text] [Related]
3. Refinement of image quality in panoramic radiography using a generative adversarial network. Kim HS; Ha EG; Lee A; Choi YJ; Jeon KJ; Han SS; Lee C Dentomaxillofac Radiol; 2023 Jul; 52(5):20230007. PubMed ID: 37129509 [TBL] [Abstract][Full Text] [Related]
4. Deep learning in computed tomography super resolution using multi-modality data training. Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365 [TBL] [Abstract][Full Text] [Related]
5. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs. Moran MBH; Faria MDB; Giraldi GA; Bastos LF; Conci A Comput Biol Med; 2021 Feb; 129():104139. PubMed ID: 33271400 [TBL] [Abstract][Full Text] [Related]
6. Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI. Park S; Gach HM; Kim S; Lee SJ; Motai Y IEEE J Transl Eng Health Med; 2021; 9():1800113. PubMed ID: 34168920 [TBL] [Abstract][Full Text] [Related]
7. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain. Manoj Doss KK; Chen JC Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121 [TBL] [Abstract][Full Text] [Related]
8. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related]
9. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Zhao M; Wei Y; Wong KKL Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J; Gong K; Han P; Liu H; Li Q Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390 [TBL] [Abstract][Full Text] [Related]
11. Adapting a low-count acquisition of the bone scintigraphy using deep denoising super-resolution convolutional neural network. Ito T; Maeno T; Tsuchikame H; Shishido M; Nishi K; Kojima S; Hayashi T; Suzuki K Phys Med; 2022 Aug; 100():18-25. PubMed ID: 35716484 [TBL] [Abstract][Full Text] [Related]
12. Super-resolution of cardiac magnetic resonance images using Laplacian Pyramid based on Generative Adversarial Networks. Zhao M; Liu X; Liu H; Wong KKL Comput Med Imaging Graph; 2020 Mar; 80():101698. PubMed ID: 31935666 [TBL] [Abstract][Full Text] [Related]
13. Impact of color augmentation and tissue type in deep learning for hematoxylin and eosin image super resolution. Manuel C; Zehnder P; Kaya S; Sullivan R; Hu F J Pathol Inform; 2022; 13():100148. PubMed ID: 36268062 [TBL] [Abstract][Full Text] [Related]
14. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks]. Wu Y; Yang F; Huang J; Liu Y Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071 [TBL] [Abstract][Full Text] [Related]
15. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT. Umehara K; Ota J; Ishida T J Digit Imaging; 2018 Aug; 31(4):441-450. PubMed ID: 29047035 [TBL] [Abstract][Full Text] [Related]
16. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning. Qiu D; Zhang S; Liu Y; Zhu J; Zheng L Comput Methods Programs Biomed; 2020 Apr; 187():105059. PubMed ID: 31582263 [TBL] [Abstract][Full Text] [Related]
17. Dental bitewing radiographs segmentation using deep learning-based convolutional neural network algorithms. Bonny T; Al-Ali A; Al-Ali M; Alsaadi R; Al Nassan W; Obaideen K; AlMallahi M Oral Radiol; 2024 Apr; 40(2):165-177. PubMed ID: 38047985 [TBL] [Abstract][Full Text] [Related]
18. Generalizing the Enhanced-Deep-Super-Resolution Neural Network to Brain MR Images: A Retrospective Study on the Cam-CAN Dataset. Fiscone C; Curti N; Ceccarelli M; Remondini D; Testa C; Lodi R; Tonon C; Manners DN; Castellani G eNeuro; 2024 May; 11(5):. PubMed ID: 38729763 [TBL] [Abstract][Full Text] [Related]
19. A Lightweight Low-dose PET Image Super-resolution Reconstruction Method based on Convolutional Neural Network. Liu K; Yu H; Zhang M; Zhao L; Wang X; Liu S; Li H; Yang K Curr Med Imaging; 2023; 19(12):1427-1435. PubMed ID: 36757033 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Murata M; Ariji Y; Ohashi Y; Kawai T; Fukuda M; Funakoshi T; Kise Y; Nozawa M; Katsumata A; Fujita H; Ariji E Oral Radiol; 2019 Sep; 35(3):301-307. PubMed ID: 30539342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]