These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38483899)

  • 1. Protocol for fabricating and characterizing microvessel-on-a-chip for human umbilical vein endothelial cells.
    Cacheux J; Nakajima T; Alcaide D; Sano T; Doi K; Bancaud A; Matsunaga YT
    STAR Protoc; 2024 Jun; 5(2):102950. PubMed ID: 38483899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed imaging and effluent analysis to monitor cancer cell intravasation using a colorectal cancer-on-chip.
    Strelez C; Ghaffarian K; Mumenthaler SM
    STAR Protoc; 2021 Dec; 2(4):100984. PubMed ID: 34927093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminin and hyaluronan supplementation of collagen hydrogels enhances endothelial function and tight junction expression on three-dimensional cylindrical microvessel-on-a-chip.
    Alcaide D; Alric B; Cacheux J; Nakano S; Doi K; Shinohara M; Kondo M; Bancaud A; Matsunaga YT
    Biochem Biophys Res Commun; 2024 Sep; 724():150234. PubMed ID: 38865812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol to develop a microfluidic human corneal barrier-on-a-chip to evaluate the corneal epithelial wound repair process.
    Yu Z; Hao R; Chen X; Ma L; Zhang Y; Yang H
    STAR Protoc; 2023 Mar; 4(1):102122. PubMed ID: 36861830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip.
    Li X; Mearns SM; Martins-Green M; Liu Y
    J Vis Exp; 2013 Oct; (80):e50771. PubMed ID: 24193102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric nanoparticles affect vascular function using a 3D human vascularized organotypic chip.
    Li Y; Wu Y; Liu Y; Deng QH; Mak M; Yang X
    Nanoscale; 2019 Sep; 11(33):15537-15549. PubMed ID: 31393488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for a placenta-on-a-chip model using trophoblasts differentiated from human induced pluripotent stem cells.
    Lermant A; Rabussier G; Davidson L; Lanz HL; Murdoch CE
    STAR Protoc; 2024 Mar; 5(1):102879. PubMed ID: 38358879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks.
    Gao F; Sun H; Li X; He P
    Am J Physiol Heart Circ Physiol; 2022 Jan; 322(1):H71-H86. PubMed ID: 34767485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells.
    Tsvirkun D; Grichine A; Duperray A; Misbah C; Bureau L
    Sci Rep; 2017 Mar; 7():45036. PubMed ID: 28338083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.
    Uwamori H; Ono Y; Yamashita T; Arai K; Sudo R
    Microvasc Res; 2019 Mar; 122():60-70. PubMed ID: 30472038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technique for Rapidly Forming Networks of Microvessel-Like Structures.
    Hewes SA; Ahmad FN; Connell JP; Grande-Allen KJ
    Tissue Eng Part C Methods; 2024 May; 30(5):229-237. PubMed ID: 38568845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model.
    Ahn J; Cho CS; Cho SW; Kang JH; Kim SY; Min DH; Song JM; Park TE; Jeon NL
    Acta Biomater; 2018 Aug; 76():154-163. PubMed ID: 29807185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human microvasculature-on-a chip: anti-neovasculogenic effect of nintedanib in vitro.
    Zeinali S; Bichsel CA; Hobi N; Funke M; Marti TM; Schmid RA; Guenat OT; Geiser T
    Angiogenesis; 2018 Nov; 21(4):861-871. PubMed ID: 29967964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based crosstalk analysis of cell-cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip.
    Sano T; Nakajima T; Senda KA; Nakano S; Yamato M; Ikeda Y; Zeng H; Kawabe JI; Matsunaga YT
    Stem Cell Res Ther; 2022 Dec; 13(1):532. PubMed ID: 36575469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.