BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 38483973)

  • 1. The polyglutamine domain is the primary driver of seeding in huntingtin aggregation.
    Skeens A; Siriwardhana C; Massinople SE; Wunder MM; Ellis ZL; Keith KM; Girman T; Frey SL; Legleiter J
    PLoS One; 2024; 19(3):e0298323. PubMed ID: 38483973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease.
    Wetzel R
    Acc Chem Res; 2020 Oct; 53(10):2347-2357. PubMed ID: 32975927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUMOylation Prevents Huntingtin Fibrillization and Localization onto Lipid Membranes.
    Sedighi F; Adegbuyiro A; Legleiter J
    ACS Chem Neurosci; 2020 Feb; 11(3):328-343. PubMed ID: 31880908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divalent cations promote huntingtin fibril formation on endoplasmic reticulum derived and model membranes.
    Skeens A; Markle JM; Petipas G; Frey SL; Legleiter J
    Biochim Biophys Acta Biomembr; 2024 Aug; 1866(6):184339. PubMed ID: 38763270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease.
    Drombosky KW; Rode S; Kodali R; Jacob TC; Palladino MJ; Wetzel R
    Neurobiol Dis; 2018 Dec; 120():126-138. PubMed ID: 30171891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation Promotes Distinct Huntingtin Aggregates in the Presence and Absence of Membranes.
    Adegbuyiro A; Stonebraker AR; Sedighi F; Fan CK; Hodges B; Li P; Valentine SJ; Legleiter J
    Biochemistry; 2022 Jul; 61(14):1517-1530. PubMed ID: 35759798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid headgroups alter huntingtin aggregation on membranes.
    Beasley M; Groover S; Valentine SJ; Legleiter J
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183497. PubMed ID: 33130095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding in solution alters huntingtin interaction and aggregation at interfaces.
    Groover SE; Adegbuyiro A; Fan CK; Hodges BL; Beasley M; Taylor K; Stonebraker AR; Siriwardhana C; Legleiter J
    Colloids Surf B Biointerfaces; 2021 Oct; 206():111969. PubMed ID: 34246856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphomimetic Mutations Impact Huntingtin Aggregation in the Presence of a Variety of Lipid Systems.
    Groover SE; Beasley M; Ramamurthy V; Legleiter J
    Biochemistry; 2020 Dec; 59(49):4681-4693. PubMed ID: 33256402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.
    Sahoo B; Arduini I; Drombosky KW; Kodali R; Sanders LH; Greenamyre JT; Wetzel R
    PLoS One; 2016; 11(6):e0155747. PubMed ID: 27271685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol impacts the formation of huntingtin/lipid complexes and subsequent aggregation.
    Stonebraker AR; Beasley M; Massinople S; Wunder M; Li P; Valentine SJ; Legleiter J
    Protein Sci; 2023 May; 32(5):e4642. PubMed ID: 37052951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation behavior of chemically synthesized, full-length huntingtin exon1.
    Sahoo B; Singer D; Kodali R; Zuchner T; Wetzel R
    Biochemistry; 2014 Jun; 53(24):3897-907. PubMed ID: 24921664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils.
    Isas JM; Langen R; Siemer AB
    Biochemistry; 2015 Jun; 54(25):3942-9. PubMed ID: 26020223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance.
    Hoop CL; Lin HK; Kar K; Hou Z; Poirier MA; Wetzel R; van der Wel PC
    Biochemistry; 2014 Oct; 53(42):6653-66. PubMed ID: 25280367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Huntingtin disrupts lipid bilayers in a polyQ-length dependent manner.
    Burke KA; Hensal KM; Umbaugh CS; Chaibva M; Legleiter J
    Biochim Biophys Acta; 2013 Aug; 1828(8):1953-61. PubMed ID: 23643759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers.
    Mishra R; Gerlach GJ; Sahoo B; Camacho CJ; Wetzel R
    J Mol Biol; 2024 Jun; 436(12):168607. PubMed ID: 38734203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT.
    Chongtham A; Bornemann DJ; Barbaro BA; Lukacsovich T; Agrawal N; Syed A; Worthge S; Purcell J; Burke J; Chin TM; Marsh JL
    Hum Mol Genet; 2020 Mar; 29(4):674-688. PubMed ID: 31943010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes.
    Gao X; Campbell WA; Chaibva M; Jain P; Leslie AE; Frey SL; Legleiter J
    Biochemistry; 2016 Jan; 55(1):92-102. PubMed ID: 26652744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells.
    Kar K; Arduini I; Drombosky KW; van der Wel PC; Wetzel R
    J Mol Biol; 2014 Feb; 426(4):816-29. PubMed ID: 24291210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.