These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38484300)

  • 1. Visualization of Ice Crystal Behavior in Mouse Oocytes During High-Speed Quench Cooling and Ice Inhibition by Antifreezing Hydrogels.
    Li X; Zhang S; Zhang Y; Zhou X
    Biopreserv Biobank; 2024 Aug; 22(4):404-412. PubMed ID: 38484300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice formation and its elimination in cryopreservation of oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    Sci Rep; 2024 Aug; 14(1):18809. PubMed ID: 39138273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving vitrification efficiency of human in vitro matured oocytes by the addition of LEA proteins.
    Li L; Bi X; Wu X; Chen Z; Cao Y; Zhao G
    Hum Reprod; 2024 Jun; 39(6):1275-1290. PubMed ID: 38592717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.
    Mazur P; Seki S
    Cryobiology; 2011 Feb; 62(1):1-7. PubMed ID: 21055397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure.
    Seki S; Mazur P
    Cryobiology; 2009 Aug; 59(1):75-82. PubMed ID: 19427303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the crystallization and vitrification of cryopreserved cells.
    Lin M; Cao H; Meng Q; Li J; Jiang P
    Cryobiology; 2022 Jun; 106():13-23. PubMed ID: 35550791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of vitrification on oocyte quality.
    Chang CC; Shapiro DB; Nagy ZP
    Biol Reprod; 2022 Feb; 106(2):316-327. PubMed ID: 34962575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Suppression Effect of Magnetic Induction Heating and Microencapsulation on Ice Crystallization Enables Low-Cryoprotectant Vitrification of Stem Cell-Alginate Hydrogel Constructs.
    Liu X; Zhao G; Chen Z; Panhwar F; He X
    ACS Appl Mater Interfaces; 2018 May; 10(19):16822-16835. PubMed ID: 29688697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of minimal concentration of ethylene glycol (EG) combined with polyvinylpyrrolidone (PVP) on mouse oocyte survival and subsequent embryonic development following vitrification.
    Wang Y; Okitsu O; Zhao XM; Sun Y; Di W; Chian RC
    J Assist Reprod Genet; 2014 Jan; 31(1):55-63. PubMed ID: 24258349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice formation and its elimination in cryopreservation of oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    Res Sq; 2024 May; ():. PubMed ID: 38826214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-rapid warming yields high survival of mouse oocytes cooled to -196°c in dilutions of a standard vitrification solution.
    Seki S; Mazur P
    PLoS One; 2012; 7(4):e36058. PubMed ID: 22558325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Cryoprotectants Concentration on Ice Crystal Propagation Velocity.
    Amir A; Yehudit N; Pasquale P; Roy A
    Biopreserv Biobank; 2023 Dec; 21(6):547-553. PubMed ID: 36383132
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.
    Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE
    Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice.
    Seki S; Mazur P
    Biol Reprod; 2008 Oct; 79(4):727-37. PubMed ID: 18562703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice formation and its elimination in cryopreservation of bovine oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of membrane transport models to design cryopreservation procedures for oocytes.
    Caliskan S; Liu D; Oldenhof H; Sieme H; Wolkers WF
    Anim Reprod Sci; 2024 Aug; 267():107536. PubMed ID: 38908169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide as a cryoprotectant.
    Isachenko V; Montag M; Isachenko E; Dessole S; Nawroth F; van der Ven H
    Fertil Steril; 2006 Mar; 85(3):741-7. PubMed ID: 16500347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The survival of mouse oocytes shows little or no correlation with the vitrification or freezing of the external medium, but the ability of the medium to vitrify is affected by its solute concentration and by the cooling rate.
    Paredes E; Mazur P
    Cryobiology; 2013 Dec; 67(3):386-90. PubMed ID: 24056038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the size of intracellular ice crystals in mouse oocytes using a melting point depression method and the influence of intracellular solute concentrations.
    Han X; Critser JK
    Cryobiology; 2009 Dec; 59(3):302-7. PubMed ID: 19729005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.