These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38484397)
1. Acute to long-term characteristics of impedance recordings during neurostimulation in humans. Cui J; Mivalt F; Sladky V; Kim J; Richner TJ; Lundstrom BN; Van Gompel JJ; Wang HL; Miller KJ; Gregg N; Wu LJ; Denison T; Winter B; Brinkmann BH; Kremen V; Worrell GA J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38484397 [No Abstract] [Full Text] [Related]
2. Acute to long-term characteristics of impedance recordings during neurostimulation in humans. Cui J; Mivalt F; Sladky V; Kim J; Richner TJ; Lundstrom BN; Van Gompel JJ; Wang HL; Miller KJ; Gregg N; Wu LJ; Denison T; Winter B; Brinkmann BH; Kremen V; Worrell GA medRxiv; 2024 Jan; ():. PubMed ID: 38343858 [TBL] [Abstract][Full Text] [Related]
3. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Sillay KA; Rutecki P; Cicora K; Worrell G; Drazkowski J; Shih JJ; Sharan AD; Morrell MJ; Williams J; Wingeier B Brain Stimul; 2013 Sep; 6(5):718-26. PubMed ID: 23538208 [TBL] [Abstract][Full Text] [Related]
4. Impedance Rhythms in Human Limbic System. Mivalt F; Kremen V; Sladky V; Cui J; Gregg NM; Balzekas I; Marks V; St Louis EK; Croarkin P; Lundstrom BN; Nelson N; Kim J; Hermes D; Messina S; Worrell S; Richner T; Brinkmann BH; Denison T; Miller KJ; Van Gompel J; Stead M; Worrell GA J Neurosci; 2023 Sep; 43(39):6653-6666. PubMed ID: 37620157 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex. Wang C; Brunton E; Haghgooie S; Cassells K; Lowery A; Rajan R J Neural Eng; 2013 Aug; 10(4):046010. PubMed ID: 23819958 [TBL] [Abstract][Full Text] [Related]
6. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730 [TBL] [Abstract][Full Text] [Related]
7. Impedance Characteristics of Stimulation Contacts in Deep Brain Stimulation of the Anterior Nucleus of the Thalamus and Its Relationship to Seizure Outcome in Patients With Refractory Epilepsy. Möttönen T; Peltola J; Järvenpää S; Haapasalo J; Lehtimäki K Neuromodulation; 2023 Dec; 26(8):1733-1741. PubMed ID: 35688700 [TBL] [Abstract][Full Text] [Related]
8. Deep brain and cortical stimulation for epilepsy. Sprengers M; Vonck K; Carrette E; Marson AG; Boon P Cochrane Database Syst Rev; 2017 Jul; 7(7):CD008497. PubMed ID: 28718878 [TBL] [Abstract][Full Text] [Related]
9. Impedance variations over time for a closed-loop neurostimulation device: early experience with chronically implanted electrodes. Wu C; Evans JJ; Skidmore C; Sperling MR; Sharan AD Neuromodulation; 2013; 16(1):46-50; discussion 50. PubMed ID: 23136991 [TBL] [Abstract][Full Text] [Related]
10. The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes. Evers J; Lowery M Oper Neurosurg (Hagerstown); 2021 Jan; 20(2):131-140. PubMed ID: 33074305 [TBL] [Abstract][Full Text] [Related]
11. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
12. Temporal macrodynamics and microdynamics of the postoperative impedance at the tissue-electrode interface in deep brain stimulation patients. Lungu C; Malone P; Wu T; Ghosh P; McElroy B; Zaghloul K; Patterson T; Hallett M; Levine Z J Neurol Neurosurg Psychiatry; 2014 Jul; 85(7):816-9. PubMed ID: 24218525 [TBL] [Abstract][Full Text] [Related]
14. Brain impedance variation of directional leads implanted in subthalamic nuclei of Parkinsonian patients. Eleopra R; Rinaldo S; Devigili G; Lettieri C; Mondani M; D'Auria S; Piacentino M; Pilleri M Clin Neurophysiol; 2019 Sep; 130(9):1562-1569. PubMed ID: 31301634 [TBL] [Abstract][Full Text] [Related]
15. Estimation of dispersive properties of encapsulation tissue surrounding deep brain stimulation electrodes in the rat. Sridhar K; Evers J; Botelho DP; Lowery MM Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2973-2976. PubMed ID: 31946513 [TBL] [Abstract][Full Text] [Related]
16. Deep brain and cortical stimulation for epilepsy. Sprengers M; Vonck K; Carrette E; Marson AG; Boon P Cochrane Database Syst Rev; 2014 Jun; (6):CD008497. PubMed ID: 24937707 [TBL] [Abstract][Full Text] [Related]
17. Variation in deep brain stimulation electrode impedance over years following electrode implantation. Satzer D; Lanctin D; Eberly LE; Abosch A Stereotact Funct Neurosurg; 2014; 92(2):94-102. PubMed ID: 24503709 [TBL] [Abstract][Full Text] [Related]
18. Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus. Brinda AK; Doyle AM; Blumenfeld M; Krieg J; Alisch JSR; Spencer C; Lecy E; Wilmerding LK; DeNicola A; Johnson LA; Vitek JL; Johnson MD J Neural Eng; 2021 May; 18(4):. PubMed ID: 33906174 [No Abstract] [Full Text] [Related]
19. In vivo impedance spectroscopy of deep brain stimulation electrodes. Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421 [TBL] [Abstract][Full Text] [Related]
20. Sources and effects of electrode impedance during deep brain stimulation. Butson CR; Maks CB; McIntyre CC Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]